Data generated from modern applications and the internet in healthcare is extensive and rapidly expanding. Therefore, one of the significant success factors for any application is understanding and extracting meaningful information using digital analytics tools. These tools will positively impact the application's performance and handle the challenges that can be faced to create highly consistent, logical, and information-rich summaries. This paper contains three main objectives: First, it provides several analytics methodologies that help to analyze datasets and extract useful information from them as preprocessing steps in any classification model to determine the dataset characteristics. Also, this paper provides a comparative study of several classification algorithms by testing 12 different classifiers using two international datasets to provide an accurate indicator of their efficiency and the future possibility of combining efficient algorithms to achieve better results. Finally, building several CBC datasets for the first time in Iraq helps to detect blood diseases from different hospitals. The outcome of the analysis step is used to help researchers to select the best system structure according to the characteristics of each dataset for more organized and thorough results. Also, according to the test results, four algorithms achieved the best accuracy (Logitboost, Random Forest, XGBoost, Multilayer Perceptron). Then use the Logitboost algorithm that achieved the best accuracy to classify these new datasets. In addition, as future directions, this paper helps to investigate the possibility of combining the algorithms to utilize benefits and overcome their disadvantages.
In this work, of New Ligand [(E)-5-hydroxy-4-(3-(4-methoxy phenyl) acryl amido) naphthalene -1- sulfonic acid] (ANS) was prepared by reflexing reaction of 4-amino-5-hydroxy naphthalene sulfonic acid with para methoxy cinnamic acid, this produced and described chemical was employed as ligand to prepare tri and di-organotin complexes by condensation reaction with the salts of organotin chloride (phenyl, butyl, and methyl tin chloride). Specialized methods, including elemental analysis, (tin and proton) magnetic resonance, and infrared spectra, were used to identify the complexes. DPPH (2,2-diphenyl-1-picrylhydrazyl) and CUPRAC (Cupric Reducing Antioxidant Capacity) are both commonly used methods for measuring antioxidant capacity in v
... Show MoreObjective (s): To determine proportion of anemia among sample of Pregnant women. To identify factors
associated with the anemia (Maternal age, maternal education, gestational age, parity, gravidity, birth
interval, smoking, taking iron supplements and dietary habits).
Methodology: A cross-sectional study conducted at Al- washash & Bab-almoadham primary health care
centers. The sample was selected by (non-probability convenient sampling) and sample size was (550).
The study started from 1st March 2011 to 30th of March 2012. The data was collected by direct interview
using special questionnaire to obtained socio-demographic information.
Results: the result shows that mean age of the subjects was 26.5± 7.5 years, 8
Breast cancer (BC) is one of the most frequently observed malignancy in females worldwide. Today, tamoxifen (TAM) is considered as the highly effective therapy for treatment of breast tumors. Oxidative stress has implicated strongly in the pathophysiology of malignancies. This study aimed to investigate the changes in the levels of oxidants and antioxidants in patients with newly diagnosed and TAM-treated BC. Sixty newly diagnosed and 60 TAM-treated women with BC and 50 healthy volunteers were included in this study. Parameters including total oxidant capacity (TOC), total antioxidant capacity (TAC), and catalase (CAT) activity were determined before and after treatment with TAM. The serum levels of TOC and oxidative stress index (OSI) were
... Show MoreThe emphasis of Master Production Scheduling (MPS) or tactic planning is on time and spatial disintegration of the cumulative planning targets and forecasts, along with the provision and forecast of the required resources. This procedure eventually becomes considerably difficult and slow as the number of resources, products and periods considered increases. A number of studies have been carried out to understand these impediments and formulate algorithms to optimise the production planning problem, or more specifically the master production scheduling (MPS) problem. These algorithms include an Evolutionary Algorithm called Genetic Algorithm, a Swarm Intelligence methodology called Gravitational Search Algorithm (GSA), Bat Algorithm (BAT), T
... Show MoreFind cares studying ways in the development of industrial products and designs: the way the progressive development (how typical) and root development (jump design), was the aim of the research: to determine the effectiveness of the pattern and the jump in the development of designs and industrial products. After a process of analysis of a sample of research and two models of contemporary household electrical appliances, it was reached a set of findings and conclusions including:1-leaping designs changed a lot of entrenched perceptions of the user on how the product works and its use and the size and shape of the product, revealing him about the possibilities of sophisticated relationships with the product, while keeping the typical desi
... Show MoreSeveral recent approaches focused on the developing of traditional systems to measure the costs to meet the new environmental requirements, including Attributes Based Costing (ABCII). It is method of accounting is based on measuring the costs according to the Attributes that the product is designed on this basis and according to achievement levels of all the Attribute of the product attributes. This research provides the knowledge foundations of this approach and its role in the market-oriented compared to the Activity based costing as shown in steps to be followed to apply for this Approach. The research problem in the attempt to reach the most accurate Approach in the measurement of the cost of products from th
... Show Moreنشاطات فرع الدراسات الدولية
NeighShrink is an efficient image denoising algorithm based on the discrete wavelet
transform (DWT). Its disadvantage is to use a suboptimal universal threshold and identical
neighbouring window size in all wavelet subbands. Dengwen and Wengang proposed an
improved method, which can determine an optimal threshold and neighbouring window size
for every subband by the Stein’s unbiased risk estimate (SURE). Its denoising performance is
considerably superior to NeighShrink and also outperforms SURE-LET, which is an up-todate
denoising algorithm based on the SURE. In this paper different wavelet transform
families are used with this improved method, the results show that Haar wavelet has the
lowest performance among