This study was focused on biotreatment of soil which polluted by petroleum compounds (Diesel) which caused serious environmental problems. One of the most effective and promising ways to treat diesel-contaminated soil is bioremediation. It is a choice that offers the potential to destroy harmful pollutants using biological activity. Four bacterial strains were isolated from diesel contaminated soil samples. The isolates were identified by the Vitek 2 system, as Sphingomonas paucimobilis, Pentoae species, Staphylococcus aureus, and Enterobacter cloacae. The potential of biological surfactant production was tested using the Sigma 703D stand-alone tensiometer showed that these isolates are biological surfactant producers. The better results of the surface tension reduction test were obtained using the mixed bacterial culture which reduced the surface tension of the medium from 66mN/m to 33.89mN/m. For further evidence of the biodegradation effect of these isolates individually and as a mixed culture, which was supported by the use of Gas-Chromatography technology confirming the occurrence of biodegradation. The capability of mixed bacterial culture was examined to remediate the diesel contaminated soil in bio piles system. Two pilot scale bio piles (25 kg soil each) were constructed containing soils contaminated with approximately 2140 mg/kg total petroleum hydrocarbons (TPHs). Both systems were equipped with oxygen to provide aerobic conditions, incubated at ambient temperature and weekly sampling within 35 days (during summer season). Overall 75.71 % of the total petroleum hydrocarbons were removed from the amended soil and 33.18 % of the control soil at the end of study period. The study concluded that the ex-situ bioremediation (bio piles) is a good option for treating the soil contaminated with diesel as economical and environmentally friendly.
This study has contributed to identify convenience of the land Usifiya of Mahmudiya district baghdad province for the cultivation of sensitive and salt resisting crops and growing pasture .The nine pedons (tracks) of the study have spread over three transects to cover the whole area the north, middle and south .
Depending on Visual Space tupe (TM) for 2007 which is super classified, samples are distributed on all classes of land cover
It is detected the presence of nine series soils namely
MM5- MW96- DM 115 for 1st transect
MF12- DM46 - DM96 for 2nd transect
DM56- DF56 - MW5 for 3rd transect
Soils are classified to the level of sub great group according to (soil Survey Staff) to :
*Typic Torri Fluvents , Typic Haplos
This work focused on anthropogenic influences of the trace metals distribution in the soils of Kirkuk city. Sequential extraction technique was used to determine the distribution of the chemical fractions of Ag, Cd, Co, Cu, Ni, Pb, Zn, As, Cr and V in soil of Kirkuk city. This area is affected mainly by burning oil trash. Results show that these heavy metals were primarily restricted to surface horizons and mostly associated with the residual fraction (28.8 – 50%). The remnant fractions (13.8 – 33.1%) linked to the organic matter, 7.9 – 27.2% was bound to Fe-Mn oxide, 0.7 – 27.9 was bound to carbonate. Only a small amount of the total metals in the soil is exchangeable (0.5 – 4.2%) and water soluble (0 – 4.1%) fractions.
... Show MoreCyanobacteria are prokaryotic photosynthetic communities which are used in biofertilization of many plants especially rice plant. Cyanobacteria play a vital role to increase the plant's ability for salinity tolerance. Salinity is a worldwide problem which affects the growth and productivity of crops. In this work three cyanobacteria strains (Nostoc calcicola, Anabaena variabilis, and Nostoc linkia) were isolated from saline soil at Kafr El-Sheikh Governorate; North Egypt. The propagated cyanobacteria strains were used to withstand salinity of the soil and increase rice plant growth (Giza 178). The length of roots and shoot seedlings was measured for seven and forty days of cultivation, respectively. The results of this investigation showed
... Show MoreAlthough the axial aptitude and pile load transfer under static loading have been extensively documented, the dynamic axial reaction, on the other hand, requires further investigation. During a seismic event, the pile load applied may increase, while the soil load carrying capacity may decrease due to the shaking, resulting in additional settlement. The researchers concentrated their efforts on determining the cause of extensive damage to the piles after the seismic event. Such failures were linked to discontinuities in the subsoil due to abrupt differences in soil stiffness, and so actions were called kinematic impact of the earthquake on piles depending on the outcomes of laboratory
Evaluating the behavior of a ring foundation resting on multi-layered soil is one of the important issues facing civil engineers. Many researchers have studied the behavior of ring foundation rests on multi-layered soil with vertical loads acting on the foundation. In real life ring foundation can be subjected to both vertical and horizontal loads at the same time due to wind or the presence of soil. In this research, the behavior of ring footing subjected to inclined load has been studied using PLAXIS software. Furthermore, the effect of multi-layered soil has been simulated in the model. The results showed that both vertical and horizontal stresses are mainly affected when the inclination angle of the load exceeded 45 degrees with a reduc
... Show MoreBuried pipeline systems are commonly used to transport water, sewage, natural oil/gas and other materials. The beneficial of using geogrid reinforcement is to increase the bearing capacity of the soil and decrease the load transfer to the underground structures.
This paper deals with simulation of the buried pipe problem numerically by finite elements method using the newest version of PLAXIS-3D software. Rajkumar and Ilamaruthi's study, 2008 has been selected to be reanalyzed as 3D problem because it is containing all the properties needed by the program such as the modulus of elasticity, Poisson's ratio, angle of internal friction. It was found that the results
... Show MoreSoil invertebrates community an important role as part of essential food chain and responsible for the decomposition in the soil, helps soil aeration , nutrients recycling and increase agricultural production by providing the essential elements necessary for photosynthesis and energy flow in ecosystems.The aim of the present study was to investigate the soil invertebrates community in one of the date palms plantation in Aljaderia district South of Baghdad, , and their relationships with some physical and chemical properties of the soil , as Five randomly distributed replicates of soil samples were collected monthly. Invertebrates samples were sorted from the soil with two methods, direct method to isolate large invertebrates and indirec
... Show MoreThe study of the future of the international system currently appears, according to scientific data and existing facts in light of the emergence of international actors from non-states and international informal institutions, to be heading towards a non-polarity system and this trend is fueled by many variables to reduce polarity, and it is expected in the future that the international system will turn into a non-polarity.
Recent phosphorus (P) pollution in the United States, mainly in Maine, has raised some severe concerns over the use of P fertilizer application rates in agriculture. Phosphorus is the second most limiting nutrient after nitrogen and has damaging impacts on crop yield if found to be deficient. Therefore, farmers tend to apply more P than is required to satisfy any P loss after its application at planting. Several important questions were raised in this study to improve P efficiency and reduce its pollution. The objective of this study was to find potential reasons for P pollution in water bodies despite a decrease in potato acreage. Historically, the potato was found to be responsible for P water contamination due to its high P sensitivity a
... Show MoreExistence of these soils, sometimes with high gypsum content, caused difficult problems to the buildings and strategic projects due to dissolution and leaching of gypsum by the action of waterflow through soil mass. In this research, a new technique is adopted to investigate the performance of replacement and geosynthetic reinforcement materials to improve the gypseous soil behavior through experimential set up manufactured loaclally specially for this work. A series of tests were carried out using steel container (600*600*500) mm. A square footing (100*100) mm was placed at the center of the top surface of the bed soil. The results showed that the most effective thickness for the dune sand layer with geotextile at the interface, within
... Show More