The proliferation of many editing programs based on artificial intelligence techniques has contributed to the emergence of deepfake technology. Deepfakes are committed to fabricating and falsifying facts by making a person do actions or say words that he never did or said. So that developing an algorithm for deepfakes detection is very important to discriminate real from fake media. Convolutional neural networks (CNNs) are among the most complex classifiers, but choosing the nature of the data fed to these networks is extremely important. For this reason, we capture fine texture details of input data frames using 16 Gabor filters indifferent directions and then feed them to a binary CNN classifier instead of using the red-green-blue color information. The purpose of this paper is to give the reader a deeper view of (1) enhancing the efficiency of distinguishing fake facial images from real facial images by developing a novel model based on deep learning and Gabor filters and (2) how deep learning (CNN) if combined with forensic tools (Gabor filters) contributed to the detection of deepfakes. Our experiment shows that the training accuracy reaches about 98.06% and 97.50% validation. Likened to the state-of-the-art methods, the proposed model has higher efficiency.
The dynamic development of computer and software technology in recent years was accompanied by the expansion and widespread implementation of artificial intelligence (AI) based methods in many aspects of human life. A prominent field where rapid progress was observed are high‐throughput methods in biology that generate big amounts of data that need to be processed and analyzed. Therefore, AI methods are more and more applied in the biomedical field, among others for RNA‐protein binding sites prediction, DNA sequence function prediction, protein‐protein interaction prediction, or biomedical image classification. Stem cells are widely used in biomedical research, e.g., leukemia or other disease studies. Our proposed approach of
... Show MoreThe presence of hydrocarbons in the soil is considered one of the main problems of pollution. In our current study, eight samples isolated from soil saturated with hydrocarbons were taken from different areas of Baghdad, Iraq. In this study, 5 isolates belonging to Pseudomonas aeruginosa by 99%, 4 isolates to Klebsiella pneumoniae by 98%, and 3 isolates to Enterobacter hormaechei by 97% were diagnosed in different ways. A molecular examination was also conducted by 16sRNA. We recorded P. aeruginosa, K. Pneumoniae and E. hormaechei as new local isolates in NCBI. In addition, a comparison was made between our isolates and the global isolates to determine the degree of convergence in the evolutionary line. The genes alkB and nahAc7 were diagno
... Show MoreSoftware-defined networking (SDN) presents novel security and privacy risks, including distributed denial-of-service (DDoS) attacks. In response to these threats, machine learning (ML) and deep learning (DL) have emerged as effective approaches for quickly identifying and mitigating anomalies. To this end, this research employs various classification methods, including support vector machines (SVMs), K-nearest neighbors (KNNs), decision trees (DTs), multiple layer perceptron (MLP), and convolutional neural networks (CNNs), and compares their performance. CNN exhibits the highest train accuracy at 97.808%, yet the lowest prediction accuracy at 90.08%. In contrast, SVM demonstrates the highest prediction accuracy of 95.5%. As such, an
... Show MoreRegarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct
... Show MoreActive Learning And Creative Thinking
The use of deep learning.
Learning Disabilities are described as a hidden and puzzling disability. Children with these difficulties have the potential to hide weaknesses in their performance because they are a homogenous group of disorders that consist of obvious difficulties in acquiring and using reading, writing, Mathematical inference. Thus, the research aims to identify the disabilities of academic learning in (reading, writing, mathematics), identify the problems of behavior (general, motor, social). Identify the relationship among behaviour problems. The research also aims to identify the counseling needs to reduce the behavioral problems. The researcher adopted the analytical descriptive method by preparing two main tools for measuring learning disabiliti
... Show MoreBrainstorming is one of the fundamental and necessary concepts for practicing the auditing profession, as auditing standards encouraged the implementation of brainstorming sessions to reach reasonable assurance about the validity of the evidence and information obtained by the auditor to detect fraud, as the implementation of brainstorming sessions and the practice of professional suspicion during the audit process lead to increase the quality of auditing and thus raise the financial community's confidence in the auditing profession again after it was exposed to several crises that led to the financial community losing confidence in the auditing profession.
The research aims to explain the effect of brain
... Show MoreBrainstorming is one of the fundamental and necessary concepts for practising the auditing profession, as auditing standards encouraged the implementation of brainstorming sessions to reach reasonable assurance about the validity of the evidence and information obtained by the auditor to detect fraud, as the implementation of brainstorming sessions and the practice of professional suspicion during the audit process lead To increase the quality of auditing and thus raise the financial community's confidence in the auditing profession again after it was exposed to several crises that led to the financial community losing confidence in the auditing profession.
The research aims to explain the effect of brain
... Show More