The aim of this study is to utilize the electromembrane extraction (EME) system as a manner for effective removal of zinc from aqueous solutions. A novel and distinctive electrochemical cell design was adopted consisting of two glass chambers, a supported liquid membrane (SLM) housing a polypropylene flat membrane infused with 1-octanol and a carrier. Two electrodes were used, a graphite as anode and a stainless steel as cathode. A comprehensive examination of several influential factors including the choice of carrier, the applied voltage magnitude, the initial pH of the donor solution, and the initial concentration of zinc was performed, all in a concerted effort to ascertain their respective impacts on the efficiency of zinc elimination. Two distinct carriers, namely tris(2-ethylhexyl) phosphate (TEHP) and bis(2-ethylhexyl) phosphate (DEHP) were evaluated, in a tandem with utilization of 1-octanol. The results revealed essential role played by the applied voltage in augmenting the rate of mass transfer of zinc across the membrane. The best operating conditions were utilized for 1-octanol enriched with 1.0 vol.% bis(2-ethylhexyl) phosphate as a carrier, applied voltage of 60 V, initial pH of 5, initial zinc concentration of 15 mg L-1, extraction duration of 6 hours, and stirring rate of 1000 rpm. Surprisingly, operating under these meticulously devised conditions culminated in the outstanding removal efficiency of 87.3 %. In comparison with no applied voltage, a substantial enhancement in removal efficiency was observed, transcending from a meager 36.67 % to an impressive 87.3 % at 60 V, suggesting thus a tremendous potential of EME as an efficacious technique for the elimination of heavy metals.
In the present work, the pollutants of the municipal wastewater are reduced using Chlorella vulgaris microalgae. The pollutants that were treated are: Total organic carbon (TOC), Chemical oxygen demand (COD), Nitrate (NO3), and Phosphate (PO4). Firstly, the treatment was achieved at atmospheric conditions (Temperature = 25oC), pH 7 with time (1 – 48 h). To study the effect of other microorganisms on the reduction of pollutants, sterilized wastewater and unsterilized wastewater were used for two types of packing (cylindrical plastic and cubic polystyrene) as well as algae's broth (without packing), where the microalgae are grown on the packing then transported to the wastewater for treatment. Th
... Show MoreThis work was conducted to study the extraction of eucalyptus oil from natural plants (Eucalyptus camadulensis leaves) by organic solvents. the effects of the main operating parameters were studied; type of solvent (n-hexane and ethanol), time to reach equilibrium, the temperature (45°C to 65°C) for n-hexane and (45°C to 75°C) for ethanol, solvent to solid ratio (5:1 to 8:1 (v/w)), agitation speed (0 to 900 rpm) and the particle size (0.5 to 2.5 cm) of fresh leaves to find the best processing conditions for the achieving maximum oil yield. The concentration of eucalyptus oil in solvent was measured by using UV-spectrophotometer. The results (for n-hexane) showed that the agitation speed of 900 rpm, temperature 65°C with solvent to soli
... Show MoreThis study included isolation and characterization of extremely halophilic bacteria from Al-Massab Al-Aam region in South of Iraq Fifty isolates were identified by using numerical taxonomy 40 strains belonged to the genus Halobacterium which inclucted Hb. halobium Hb. cutirubrum Hb. salinarium Hb. saccharovorum Hb. valismortis and Hb. volcanii. Ten strains belonged to the genus Halococcus which included Hc. morrhuae Hc. saccharolyticus. Growth curves were sensitive mutants determined for wild type and salt Generation time in logarthmic phase was measured and found to be (10.37 2hr 7 0.59) for Hb. salinarium / 18 (6.490 hr 0.24) for Hb. cutirubrum / 32, (6.700 hr + 0.488) for Hb. valismortis / 20, (11.243 hr + 0.96) for Hb. volcanii / 7. (7
... Show MoreIn recent years and decades, there is a great need for developing new alternative energy sources or renewable sustainable energy. On the other hand, new technology approaches are growing . towards benefits from the valuable nutrients in wastewater which are unrecoverable by traditional wastewater treatment processes. In the current study, a novel integrated system of microbial fuel cell and anoxic bioreactor (MFC-ANB) was designed and constructed to investigate its potential for slaughterhouses wastewater treatment, nitrogen recovery, and power generation. The system consisted of a double-chamber tubular type MFC with biocathode inoculated with freshly collected activated sludge. The MFC-ANB system was continuously fed with real-fi
... Show Morenew six mixed ligand complexes of some transition metal ions Manganese (II), Cobalt(II), Iron (II), Nickel (II) , and non transition metal ion zinc (II) And Cadmium(II) with L-valine (Val H ) as a primary ligand and Saccharin (HSac) as a secondary ligands have been prepared. All the prepared complexes have been characterized by molar conductance, magnetic susceptibility infrared, electronic spectral, Elemental microanalysis (C.H.N) and AA . The complexes with the formulas [M(Val)2(HSac)2] M= Mn (II) , Fe (II) , Co(II) ,Ni(II), Cu (II),Zn(II) and Cd(II) L- Val H= (C5H11NO2) , C7H5NO3S The study shows that these complexes have octahedral geometry; The metal complexes have been screened for their in microbiological activities against bacteria.
... Show MoreBiosorption of lead, chromium, and cadmium ions from aqueous solution by dead anaerobic biomass (DAB) was studied in single, binary, and ternary systems with initial concentration of 50 mg/l. The metal-DAB affinity was the same for all systems. The main biosorption mechanisms were complexation and physical adsorption of metallic cations onto natural active functional groups on the cell wall matrix of the DAB. It was found that biosorption of the metallic cations onto DAB cell wall component was a surface process. The main functional groups involved in the metallic cation biosorption were apparently carboxyl, amino, hydroxyle, sulfhydryl, and sulfonate. These groups were part of the DAB cell wall structural polymers. Hydroxyle groups (–O
... Show MoreThe combined system of electrocoagulation (EC) and electro-oxidation (EO) is one of the most promising methods in dye removal. In this work, a solution of 200 mg/l of Congo red was used to examine the removal of anionic dye using an EC-EO system with three stainless steel electrodes as the auxiliary electrodes and an aluminum electrode as anode for the EC process, Cu-Mn-Ni Nanocomposite as anode for the EO process. This composite oxide was simultaneously synthesized by anodic and cathodic deposition of Cu (NO3)2, MnCl2, and Ni (NO3)2 salts with 0.075 M as concentrations of each salt with a fixed molar ratio (1:1:1) at a constant current density of 25 mA/cm2. The characteristics structure and surface morphology of the depo
... Show More