Preferred Language
Articles
/
txYj14kBVTCNdQwCpI23
Adaptive Robust Controller Design-Based RBF Neural Network for Aerial Robot Arm Model
...Show More Authors

Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Feb 13 2022
Journal Name
Petroleum & Coal
Laboratory-Based Correlations to Estimate Geomechanical Properties for Carbonate Tight Reservoir.
...Show More Authors

Rock mechanical properties are critical parameters for many development techniques related to tight reservoirs, such as hydraulic fracturing design and detecting failure criteria in wellbore instability assessment. When direct measurements of mechanical properties are not available, it is helpful to find sufficient correlations to estimate these parameters. This study summarized experimentally derived correlations for estimating the shear velocity, Young's modulus, Poisson's ratio, and compressive strength. Also, a useful correlation is introduced to convert dynamic elastic properties from log data to static elastic properties. Most of the derived equations in this paper show good fitting to measured data, while some equations show scatters

... Show More
Publication Date
Sat Jan 10 2015
Journal Name
British Journal Of Mathematics & Computer Science
The Use of Gradient Based Features for Woven Fabric Images Classification
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
International Journal Of Advanced Computer Science And Applications
Achieving Flatness: Honeywords Generation Method for Passwords based on user behaviours
...Show More Authors

View Publication
Crossref (3)
Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (4)
Scopus Crossref
Publication Date
Fri Dec 01 2023
Journal Name
Ieee Antennas And Wireless Propagation Letters
Stabilized and Fast Method for Compressive-Sensing-Based Method of Moments
...Show More Authors

View Publication
Scopus (13)
Crossref (10)
Scopus Clarivate Crossref
Publication Date
Sun Apr 01 2018
Journal Name
2018 9th International Conference On Information And Communication Systems (icics)
An intersection-based segment aware algorithm for geographic routing in VANETs
...Show More Authors

In networking communication systems like vehicular ad hoc networks, the high vehicular mobility leads to rapid shifts in vehicle densities, incoherence in inter-vehicle communications, and challenges for routing algorithms. It is necessary that the routing algorithm avoids transmitting the pockets via segments where the network density is low and the scale of network disconnections is high as this could lead to packet loss, interruptions and increased communication overhead in route recovery. Hence, attention needs to be paid to both segment status and traffic. The aim of this paper is to present an intersection-based segment aware algorithm for geographic routing in vehicular ad hoc networks. This algorithm makes available the best route f

... Show More
View Publication
Scopus (5)
Crossref (5)
Scopus Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Perceptually Important Points-Based Data Aggregation Method for Wireless Sensor Networks
...Show More Authors

The transmitting and receiving of data consume the most resources in Wireless Sensor Networks (WSNs). The energy supplied by the battery is the most important resource impacting WSN's lifespan in the sensor node. Therefore, because sensor nodes run from their limited battery, energy-saving is necessary. Data aggregation can be defined as a procedure applied for the elimination of redundant transmissions, and it provides fused information to the base stations, which in turn improves the energy effectiveness and increases the lifespan of energy-constrained WSNs. In this paper, a Perceptually Important Points Based Data Aggregation (PIP-DA) method for Wireless Sensor Networks is suggested to reduce redundant data before sending them to the

... Show More
View Publication Preview PDF
Scopus (61)
Crossref (51)
Scopus Clarivate Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (6)
Scopus Crossref
Publication Date
Sat May 24 2025
Journal Name
Iraqi Journal For Computer Science And Mathematics
Intrusion Detection System for IoT Based on Modified Random Forest Algorithm
...Show More Authors

An intrusion detection system (IDS) is key to having a comprehensive cybersecurity solution against any attack, and artificial intelligence techniques have been combined with all the features of the IoT to improve security. In response to this, in this research, an IDS technique driven by a modified random forest algorithm has been formulated to improve the system for IoT. To this end, the target is made as one-hot encoding, bootstrapping with less redundancy, adding a hybrid features selection method into the random forest algorithm, and modifying the ranking stage in the random forest algorithm. Furthermore, three datasets have been used in this research, IoTID20, UNSW-NB15, and IoT-23. The results are compared with the three datasets men

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Thu Jan 30 2020
Journal Name
Journal Of Engineering
Study Impact of Unified Power Flow Controller (UPFC) on a Transmission Line Performance under Different Loading Conditions
...Show More Authors

Now-a-days the Flexible AC Transmission Systems (FACTS) technology is very effective in improving the power flow along the transmission lines and makes the power system more flexible and controllable. This paper deals with the most robust type of FACTS devices; it’s a Unified Power Flow Controller (UPFC). Many cases have been taken to study how the system behaves in the presence and absence of the UPFC under normal and contingency conditions. The UPFC is a device that can be used to improve the bus voltage, increasing the loadability of the line and reduce the active and reactive power losses in the transmission lines, through controlling the flow of real and reactive power. Both the magnitude and the phase angle of th

... Show More
View Publication Preview PDF
Crossref (1)
Crossref