Aerial Robot Arms (ARAs) enable aerial drones to interact and influence objects in various environments. Traditional ARA controllers need the availability of a high-precision model to avoid high control chattering. Furthermore, in practical applications of aerial object manipulation, the payloads that ARAs can handle vary, depending on the nature of the task. The high uncertainties due to modeling errors and an unknown payload are inversely proportional to the stability of ARAs. To address the issue of stability, a new adaptive robust controller, based on the Radial Basis Function (RBF) neural network, is proposed. A three-tier approach is also followed. Firstly, a detailed new model for the ARA is derived using the Lagrange–d’Alembert principle. Secondly, an adaptive robust controller, based on a sliding mode, is designed to manipulate the problem of uncertainties, including modeling errors. Last, a higher stability controller, based on the RBF neural network, is implemented with the adaptive robust controller to stabilize the ARAs, avoiding modeling errors and unknown payload issues. The novelty of the proposed design is that it takes into account high nonlinearities, coupling control loops, high modeling errors, and disturbances due to payloads and environmental conditions. The model was evaluated by the simulation of a case study that includes the two proposed controllers and ARA trajectory tracking. The simulation results show the validation and notability of the presented control algorithm.
Optimum perforation location selection is an important study to improve well production and hence in the reservoir development process, especially for unconventional high-pressure formations such as the formations under study. Reservoir geomechanics is one of the key factors to find optimal perforation location. This study aims to detect optimum perforation location by investigating the changes in geomechanical properties and wellbore stress for high-pressure formations and studying the difference in different stress type behaviors between normal and abnormal formations. The calculations are achieved by building one-dimensional mechanical earth model using the data of four deep abnormal wells located in Southern Iraqi oil fields. The magni
... Show MoreA Genetic Algorithm optimization model is used in this study to find the optimum flow values of the Tigris river branches near Ammara city, which their water is to be used for central marshes restoration after mixing in Maissan River. These tributaries are Al-Areed, AlBittera and Al-Majar Al-Kabeer Rivers. The aim of this model is to enhance the water quality in Maissan River, hence provide acceptable water quality for marsh restoration. The model is applied for different water quality change scenarios ,i.e. , 10%,20% increase in EC,TDS and BOD. The model output are the optimum flow values for the three rivers while, the input data are monthly flows(1994-2011),monthly water requirements and water quality parameters (EC, TDS, BOD, DO and
... Show MoreB Saleem, H Alwan, L Khalid, Journal of Engineering, 2011 - Cited by 2
The services provided by the municipal institutions of the basic things needed by the man in his daily life and the evolution of cities basically depends on these services and therefore has paid most of the world's attention to this vital facility and give him the biggest concern for the welfare of the citizens, as is the research problem that there is no program scrutiny to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of the services provided and was based on research on the premise that the preparation of the existence of audit program to evaluate the performance of municipal institutions contribute to measuring the efficiency and effectiveness of services provided has reac
... Show MoreThis research consists of two parts, the first part concern with analyzing the collected data of BOD and COD values in discharge waste water from Al-Dora refinery during 2010 to find the relationship between these two variables The results indicates that there is a high correlation between BOD and COD when using a natural logarithm model (0.86 ln(COD)) with correlation coefficient of 0.98. This relationship is useful in predicting the BOD value using the COD value. The second part includes analyzing collected data from the same site in order to find a relationsip between BOD and other parameters COD, Phenol(phe), Temperature(T), Oil, Sulphat(SO4),pH and Total dissolved solids( TDS) discharged from the refinery. The results indicated that th
... Show More<span lang="EN-GB">This paper highlights the barriers that have led to a delay in the implementation of E-Health services in Iraq. A new framework is proposed to improve the E-Health sector using a SECI model which describes how explicit and tacit knowledge is generated, transferred, and recreated in organizations through main stages (socialization, externalization, combination and internalization). Class association rules (CARs) is integrated to mine the SECI model by extracting related rules which correspond to the medical advice. The proposed framework (SECICAR) can be done through a web portal to assemble healthcare professionals, patients in one environment. SECICAR will be applied to the hypertension community to show th
... Show MoreIn this paper, the problem of resource allocation at Al-Raji Company for soft drinks and juices was studied. The company produces several types of tasks to produce juices and soft drinks, which need machines to accomplish these tasks, as it has 6 machines that want to allocate to 4 different tasks to accomplish these tasks. The machines assigned to each task are subject to failure, as these machines are repaired to participate again in the production process. From past records of the company, the probability of failure machines at each task was calculated depending on company data information. Also, the time required for each machine to complete each task was recorded. The aim of this paper is to determine the minimum expected ti
... Show MoreIn this paper we estimate the coefficients and scale parameter in linear regression model depending on the residuals are of type 1 of extreme value distribution for the largest values . This can be regard as an improvement for the studies with the smallest values . We study two estimation methods ( OLS & MLE ) where we resort to Newton – Raphson (NR) and Fisher Scoring methods to get MLE estimate because the difficulty of using the usual approach with MLE . The relative efficiency criterion is considered beside to the statistical inference procedures for the extreme value regression model of type 1 for largest values . Confidence interval , hypothesis testing for both scale parameter and regression coefficients
... Show More