In this article, we recalled different types of iterations as Mann, Ishikawa, Noor, CR-iteration and, Modified SP_iteration of quasi δ-contraction mappings, and we proved that all these iterations equivalent to approximate fixed points of δ-contraction mappings in Banach spaces.
Abstract. Nano-continuous mappings have a wide range of applications in pure and applied sciences. This paper aims to study and investigate new types of mappings, namely nano-para-compact, completely nano-regular, nano-para-perfect, and countably nano-para-perfect mappings in nano-topological spaces using nano-open sets. We introduce several properties and basic characterizations related to these mappings, which are essential for proving our main results. Additionally, we discuss the relationships among these types of mappings in nano-topological spaces. We also introduce the concept of nano-Ti-mapping, where i = 0, 1, 2, nano-neighborhood separated, and nano-functionally separated, along with various other definitions. We explore the relat
... Show MoreAbstract. The purpose of this work is to introduce and investigate new concepts of mappings namely nano paracompactmappings, nano locally limited, nano h-locally limited and finally nano-perfect in nano topology by using nano-closed sets. As well as, the relation between these concepts of mappings have been study in nano topology. Additionally, the nano topology groups of the types and advances results which are introduces in this work are very vital. We also presented the type of nano Lindeloff mappings, and the relations of them was introduce and discussed with several characteristics related it. Nano morphism also introduce.
In this paper, we shall introduce a new kind of Perfect (or proper) Mappings, namely ω-Perfect Mappings, which are strictly weaker than perfect mappings. And the following are the main results: (a) Let f : X→Y be ω-perfect mapping of a space X onto a space Y, then X is compact (Lindeloff), if Y is so. (b) Let f : X→Y be ω-perfect mapping of a regular space X onto a space Y. then X is paracompact (strongly paracompact), if Y is so paracompact (strongly paracompact). (c) Let X be a compact space and Y be a p*-space then the projection p : X×Y→Y is a ω-perfect mapping. Hence, X×Y is compact (paracompact, strongly paracompact) if and only if Y is so.
Lower extremity exoskeletons can assist with performing particular functions such as gait assistance, and physical therapy support for subjects who have lost the ability to walk. This paper presents the analysis and evaluation of lightweight and adjustable two degrees of freedom, quasi-passive lower limb device to improve gait rehabilitation. The exoskeleton consists of a high torque DC motor mounted on a metal plate above the hip joint, and a link that transmits assistance torque from the motor to the thigh. The knee joint is passively actuated by spring installed parallel with the joint. The action of the passive component (spring) is combined with mechanical output of the motor to provide a good control on the designed exoskeleton whi
... Show MoreMultilevel models are among the most important models widely used in the application and analysis of data that are characterized by the fact that observations take a hierarchical form, In our research we examined the multilevel logistic regression model (intercept random and slope random model) , here the importance of the research highlights that the usual regression models calculate the total variance of the model and its inability to read variance and variations between levels ,however in the case of multi-level regression models, the calculation of the total variance is inaccurate and therefore these models calculate the variations for each level of the model, Where the research aims to estimate the parameters of this m
... Show MoreLet R be a commutative ring with identity, and W be a unital (left) R-module. In this paper we introduce and study the concept of a quasi-small prime modules as generalization of small prime modules.
Let Q be a left Module over a ring with identity ℝ. In this paper, we introduced the concept of T-small Quasi-Dedekind Modules as follows, An R-module Q is T-small quasi-Dedekind Module if,