Acid treatment is a widely used stimulation technique in the petroleum industry. Matrix acidizing is regarded as an effective and efficient acidizing technique for carbonate formations that leads to increase the fracture propagation, repair formation damage, and increase the permeability of carbonate rocks. Generally, the injected acid dissolves into the rock minerals and generates wormholes that modify the rock structure and enhance hydrocarbon production. However, one of the key issues is the associated degradation in the mechanical properties of carbonate rocks caused by the generated wormholes, which may significantly reduce the elastic properties and hardness of rocks. There have been several experimental and simulation studies regarding the impact of acid wormholes on rock weakening in various carbonate rocks (chalk, limestone, and dolomite). However, considering the number of effective parameters which are associated with matrix acidizing, it is crucial to carefully monitor the acidizing procedure as well as perform a post-treatment evaluation of the targeted rocks. This work aims to review the fundamentals of matrix acidizing as a viable stimulation technique for carbonate rocks and provide deeper insight into the potential alterations in geo-mechanical properties. This review also evaluates a group of key parameters including acid type, injection rate, wellbore geometry, and rock type, and highlights the various analytical techniques used for acid stimulation evaluation in carbonate rocks.
In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne
... Show MoreCdS and CdTe thin films were thermally deposited onto glass substrate. The CdCl2 layer was deposited onto CdS surface. These followed by annealing for different duration times to modify the surface and interface of the junction. The diffraction patterns showed that the intensity of the peaks increased with the CdCl2/annealed treatment, and the grain sizes are increased after CdCl2/annealed treatment
The consequences of ionizing radiation-induced oxidative stress on radiographers in X-ray and CT-scan departments utilizing several biochemical were analyzed. The study found highly considerable discrepancies in the interplay between radiation levels and gender in terms of mean Malondialdehyde (MAD), Vitamin D3 (Vit.D3), Triiodothyronine (T3), Thyroxine (T4), and High-Density Lipoprotein (HDL), but not Thyroid Stimulating Hormone (TSH), cholesterol, triglyceride (TG) and Low-Density Lipoprotein (LDL). The findings indicated that malondialdehyde is a useful biomarker for assessing oxidative stress in radiographers with exposure to ionizing radiation.
Praise be to God, Lord of the worlds, and prayers and peace be upon our master and beloved Muhammad, the wise guide and great teacher, the guide to a straight path, the one sent as a mercy to the worlds, and upon his good and chosen family, his chosen companions, the working scholars, and those who follow them in righteousness until the Day of Judgment.
And after:
One of the important controversial topics shared between the sciences of the Noble Hadith and the Fundamentals of God is the issue of the innovator in terms of accepting and rejecting his narration and testimony, and the difference in it leads to disagreement in many branches of jurisprudence that were based on texts narrated by innovated narrators or those accu
... Show MoreIn present days, drug resistance is a major emerging problem in the healthcare sector. Novel antibiotics are in considerable need because present effective treatments have repeatedly failed. Antimicrobial peptides are the biologically active secondary metabolites produced by a variety of microorganisms like bacteria, fungi, and algae, which possess surface activity reduction activity along with this they are having antimicrobial, antifungal, and antioxidant antibiofilm activity. Antimicrobial peptides include a wide variety of bioactive compounds such as Bacteriocins, glycolipids, lipopeptides, polysaccharide-protein complexes, phospholipids, fatty acids, and neutral lipids. Bioactive peptides derived from various natural sources like bacte
... Show MoreCephalexin and its derivatives are commonly utilized in the pharmaceutical and medicinal industry due to their biological and pharmaceutical activities, including anti-microbial, anti-cancer, anti-bacterial, and herbicidal activities as well as possessing high palatability and being useful for skin and joint infections. Interestingly, some organic drugs, including cephalexin, which exhibit toxicological and pharmacological properties, can be administered in forms of metal complexes. Many researchers have synthesized organic ligands derived from cephalexin in forms of Schiff bases and azo compounds which exhibited higher biological and medicinal properties when compared to cephalexin alone. One of the important features that make Schiff base
... Show MoreExplainable Artificial Intelligence (XAI) techniques enable transparency and trust in automated visual inspection systems by making black-box machine learning models understandable. While XAI has been widely applied, prior reviews have not addressed the specific demands of industrial and medical inspection tasks. This paper reviews studies applying XAI techniques to visual inspection across industrial and medical domains. A systematic search was conducted in IEEE Xplore, Scopus, PubMed, arXiv, and Web of Science for studies published between 2014 and 2025, with inclusion criteria requiring the application of XAI in inspection tasks using public or domain-specific datasets. From an initial pool of studies, 75 were included and categorized in
... Show MoreKurdistan power system is expanded along years ago. The electrical power is transmitted through long transmission lines. The main problem of transmission lines is active and reactive power losses. It is important to solve this issue, unless, the most of electrical energy will lost over transmission system. In this study, High Voltage Direct Current links/bipolar connection were connected in a power system to reduce the power losses. The 132kV, 50 Hz, 36 buses Kurdistan power system is used as a study case. The load flow analysis was implemented by using ETAP.16 program in which Newton-Raphson method for three cases. The results show that the losses are reduced after inserted HVDC links.
Changes in mechanical properties of material as a result of service in different conditions can be provided by mechanical testing to assist the estimation of current internal situation of these materials, or the degree of deterioration may exist in furnaces serviced at high temperature and exceed their design life. Because of the rarity works on austenitic stainless steel material type AISI 321H, in this work, ultimate tensile strength, yield strength, elongation, hardness, and absorbed energy by impact are evaluated based on experimental data obtained from mechanical testing. Samples of tubes are extracted from furnace belong to hydrotreaterunit, also samples from un-used tube material are used to make comparisons between these properti
... Show More