Preferred Language
Articles
/
tkITJpoBMeyNPGM3k73h
Pre- and Post-Cracking Resistance of Steel Fiber Reinforced Concrete Flexural Members with GFRP Bars
...Show More Authors

This research investigates the pre- and post-cracking resistance of steel fiber-reinforced concrete specimens with Glass Fiber Reinforced Polymer (GFRP) bars subjected to flexural loading. The purpose is to modify the ductility and cracking resistance of GFRP-reinforced beams, which are prone to early cracking and excessive deflections instigated by the low modulus of elasticity of GFRP. Six self-compacting concrete specimens (1500×240×200 mm), incorporating steel fibers of two lengths (25 mm and 40 mm) with varying distribution depths, were tested to assess their structural performance. The results indicate significant enhancements in cracking resistance, stiffness, energy absorption, ductility, and flexural strength. Tested beams reinforced with 40 mm-long steel fibers exhibited a 23.9%–24.2% development in the ultimate moment capacity associated with the steel-reinforced specimens, whereas those with 25 mm fibers showed smaller increases (2.7%–3.1%). The cracking resistance improved by up to 33.3% in beams with 40 mm-long fibers and by 16.67%–20% in those with 25 mm-long fibers, associated with a non-fibrous GFRP specimen. Additionally, the inclusion of 40 mm hooked-end steel fibers significantly enhanced ultimate deflection, with peak deflections increasing by 30.2%–44.8% compared to steel-reinforced beams. Fibrous GFRP-reinforced beams exhibited up to 154% higher energy absorption under ultimate load than a non-fibrous GFRP beam. All fibrous GFRP-reinforced beams achieved deformation-based ductility indices between 4.2 and 6.9, exceeding the minimum threshold of 4 for adequate deformability. These findings confirm that incorporating 40 mm steel fibers significantly improves the structural behavior of GFRP-reinforced concrete specimens, offering valuable insights for optimizing their design.

Crossref
View Publication
Publication Date
Sat Jan 02 2021
Journal Name
Al-qadisiyah Journal For Engineering Sciences
Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime
...Show More Authors

The Moisture damage is considered as one of the main challenge for the experts in the field of asphalt pavement design. The aims of the present study is to modify moisture resistance of the asphalt concrete by utilizing ceramic fibers as a type of reinforcement incorporated with hydrated lime. For this purpose, a penetration grade of the asphalt cement (40-50) was utilized as a binder with an aggregate of the maximum nominal size of 12.5mm and mineral filler limestone dust. A series of specimens has been fabricated by utilizing 0.50, 1.0, 1.5, and 2.0 percentages of ceramic fibers. For each of these contents, another subsequent group of specimens with hydrated lime with 0.0, 1.0, 1.5, and 2.0 percentages were moulded. For the additi

... Show More
Crossref (1)
Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Civil Engineering Journal
Strength and Serviceability of Reinforced Concrete Deep Beams with Large Web Openings Created in Shear Spans
...Show More Authors

Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea

... Show More
Crossref (8)
Clarivate Crossref
Publication Date
Thu Nov 29 2018
Journal Name
Civil Engineering Journal
Strength and Serviceability of Reinforced Concrete Deep Beams with Large Web Openings Created in Shear Spans
...Show More Authors

Deep beams are used in wide construction fields such as water tanks, foundations, and girders in multi-story buildings to provide certain areas free of columns. In practice it is quite often occurring to create web opening in deep beams to supply convenient passage of ventilation ducts, cable channels, gas and water pipes. Experimental studies of ten 10 deep beams were carried out, where two of them are control specimens without openings and eight with large web openings in the shear spans. The variables that have been adopted are the ratio of the shear span to the overall depth of the member cross-section, location and dimensions of the opening. Test results showed that there was a decrease in the load carrying capacity of deep bea

... Show More
View Publication
Crossref (8)
Crossref
Publication Date
Sat Feb 12 2022
Journal Name
Engineering, Technology & Applied Science Research
The Effect of Different Curing Temperatures on the Properties of Geopolymer Reinforced with Micro Steel Fibers
...Show More Authors

In this study, geopolymer mortar was designed in various experimental combinations employing 1% micro steel fibers and was subjected to different temperatures, according to the prior works of other researchers. The geopolymer mortar was developed using a variety of sustainable material proportions (fly ash and slag) to examine the influence of fibers on its strength. The fly ash weight percentage was 50%, 60%, and 70% by slag weight to study its effect on the geopolymer mortar's properties. The optimal ratio produced the most significant results when mixed at a 50:50 ratio of fly ash and slag with 1% micro steel fibers at curing temperature 240oC for 4 hours through two days. The compressive strength of the geopolymer mortar increas

... Show More
View Publication
Crossref (11)
Crossref
Publication Date
Wed Jul 04 2018
Journal Name
Civil Engineering Journal
Finite Element Analysis of Concrete Beam under Flexural Stresses Using Meso-Scale Model
...Show More Authors

Two dimensional meso-scale concrete modeling was used in finite element analysis of plain concrete beam subjected to bending. The plane stress 4-noded quadrilateral elements were utilized to model coarse aggregate, cement mortar. The effect of aggregate fraction distribution, and pores percent of the total area – resulting from air voids entrapped in concrete during placement on the behavior of plain concrete beam in flexural was detected. Aggregate size fractions were randomly distributed across the profile area of the beam. Extended Finite Element Method (XFEM) was employed to treat the discontinuities problems result from double phases of concrete and cracking that faced during the finite element analysis of concrete beam. Crac

... Show More
Crossref (6)
Clarivate Crossref
Publication Date
Thu Sep 30 2004
Journal Name
Iraqi Journal Of Chemical And Petroleum Engineering
Corrosion Inhibition of Steel Reinforcement in Concrete
...Show More Authors

View Publication Preview PDF
Publication Date
Sun Feb 01 2015
Journal Name
Journal Of Engineering
Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

In this research the behavior of reinforced concrete columns with large side openings under impact loads was studied. The overall cross sectional dimensions of the column specimens used in this research were (500*1400) mm with total height of (14000) mm. The dimensions of side openings were (600*2000) mm. The column was reinforced with (20) mm diameter in longitudinal direction, while (12) mm ties were used in the transverse direction. The effect of eccentric impact loads on the horizontal and vertical displacement for this column was studied.                              &

... Show More
View Publication Preview PDF
Publication Date
Fri Jan 01 2021
Journal Name
E3s Web Of Conferences
Behavioral Investigation of Reinforced Concrete T-Beams with Distributed Reinforcement in the Tension Flange
...Show More Authors

Current design codes and specifications allow for part of the bonded flexure tension reinforcement to be distributed over an effective flange width when the T-beams' flanges are in tension. This study presents an experimental and numerical investigation on the reinforced concrete flanged section's flexural behavior when reinforcement in the tension flange is laterally distributed. To achieve the goals of the study, numerical analysis using the finite element method was conducted on discretized flanged beam models validated via experimentally tested T-beam specimen. Parametric study was performed to investigate the effect of different parameters on the T-beams flexural behavior. The study revealed that a significant reduction in the

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Mon Feb 02 2015
Journal Name
Journal Of Engineering, University Of Baghdad
'Impact Analysis of Reinforced Concrete Columns with Side Openings Subjected to Eccentric Axial Loads
...Show More Authors

View Publication
Publication Date
Wed Mar 01 2023
Journal Name
Al-khwarizmi Engineering Journal
Mechanical PropertiesInvestigation of Unidirectional Woven Carbon Fiber Reinforced Epoxy Matrix Composite
...Show More Authors

In this study, the mechanical properties of an epoxy and unidirectional woven carbon with fiberglass composite were experimentally investigated. When preparing the composite samples, American Society for Testing and Materials (ASTM)standard was used. Tensile, impact and flexural test were conducted to investigate the mechanical properties of the new produced epoxy Unidirectional Woven Carbon and Epoxy Fiberglass composites. The outcome showed that the strength of the produced samples increased with the increase in the number of unidirectional woven carbon layers added. Two methods were utilized: (1) woven carbon composite with glass fiber (2) woven carbon composite). The two methods of composite were compared with each other.  The resul

... Show More
View Publication Preview PDF
Scopus (2)
Crossref (1)
Scopus Crossref