Preferred Language
Articles
/
thcospMBVTCNdQwChulX
Automated Sorting for Tomatoes using Artificial Neural Network
...Show More Authors

A .technology analysis image using crops agricultural of grading and sorting the test to conducted was experiment The device coupling the of sensor a with camera a and 75 * 75 * 50 dimensions with shape cube studio made-factory locally the study to studio the in taken were photos and ,)blue-green - red (lighting triple with equipped was studio The .used were neural artificial and technology processing image using maturity and quality ,damage of fruits the of characteristics external value the quality 0.92062, of was value regression the damage predict to used was network neural artificial The .network the using scheme regression a of means by 0.98654 of was regression the of maturity and 0.97981 of was regression the of .algorithm Marrquardt-Le

Publication Date
Thu Mar 31 2022
Journal Name
Iraqi Geological Journal
Development of Artificial Intelligence Models for Estimating Rate of Penetration in East Baghdad Field, Middle Iraq
...Show More Authors

It is well known that the rate of penetration is a key function for drilling engineers since it is directly related to the final well cost, thus reducing the non-productive time is a target of interest for all oil companies by optimizing the drilling processes or drilling parameters. These drilling parameters include mechanical (RPM, WOB, flow rate, SPP, torque and hook load) and travel transit time. The big challenge prediction is the complex interconnection between the drilling parameters so artificial intelligence techniques have been conducted in this study to predict ROP using operational drilling parameters and formation characteristics. In the current study, three AI techniques have been used which are neural network, fuzzy i

... Show More
Crossref
Publication Date
Mon Dec 01 2008
Journal Name
Journal Of Economics And Administrative Sciences
Neural Networks as a Discriminant Purposes
...Show More Authors

Discriminant between groups is one of the common procedures because of its ability to analyze many practical phenomena, and there are several methods can be used for this purpose, such as linear and quadratic discriminant functions. recently, neural networks is used as a tool to distinguish between groups.

In this paper the simulation is used to compare neural networks and classical method for classify observations to group that is belong to, in case of some variables that don’t follow the normal distribution. we use the proportion of number of misclassification observations to the all observations as a criterion of comparison.  

 

 

View Publication Preview PDF
Crossref
Publication Date
Wed May 31 2023
Journal Name
Iraqi Geological Journal
Studying the Effect of Permeability Prediction on Reservoir History Matching by Using Artificial Intelligence and Flow Zone Indicator Methods
...Show More Authors

The map of permeability distribution in the reservoirs is considered one of the most essential steps of the geologic model building due to its governing the fluid flow through the reservoir which makes it the most influential parameter on the history matching than other parameters. For that, it is the most petrophysical properties that are tuned during the history matching. Unfortunately, the prediction of the relationship between static petrophysics (porosity) and dynamic petrophysics (permeability) from conventional wells logs has a sophisticated problem to solve by conventional statistical methods for heterogeneous formations. For that, this paper examines the ability and performance of the artificial intelligence method in perme

... Show More
View Publication
Scopus (5)
Crossref (2)
Scopus Crossref
Publication Date
Mon May 31 2021
Journal Name
Journal Of Research In Medical And Dental Science
A Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique
...Show More Authors

A Stereomicroscopic Evaluation of Four Endodontic Sealers Penetration into Artificial Lateral Canals Using Gutta-Percha Single Cone Obturation Technique, Omar Jihad Banawi*, Raghad

View Publication Preview PDF
Publication Date
Thu Nov 21 2019
Journal Name
Journal Of Engineering
A Neural Networks based Predictive Voltage-Tracking Controller Design for Proton Exchange Membrane Fuel Cell Model
...Show More Authors

In this work, a new development of predictive voltage-tracking control algorithm for Proton Exchange Membrane Fuel Cell (PEMFCs) model, using a neural network technique based on-line auto-tuning intelligent algorithm was proposed. The aim of proposed robust feedback nonlinear neural predictive voltage controller is to find precisely and quickly the optimal hydrogen partial pressure action to control the stack terminal voltage of the (PEMFC) model for N-step ahead prediction. The Chaotic Particle Swarm Optimization (CPSO) implemented as a stable and robust on-line auto-tune algorithm to find the optimal weights for the proposed predictive neural network controller to improve system performance in terms of fast-tracking de

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sat Oct 01 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to
perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance
Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of
identification strategy consists of a feed-forward neural network with a modified activation function that
operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have
been trained online and offline have been used, without requiring any previous knowledge about the
system to be identified. The activation function that is used in the hidden layer in FFNN is a modified
version of the wavelet func

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Oct 17 2011
Journal Name
Journal Of Engineering
MODIFIED TRAINING METHOD FOR FEEDFORWARD NEURAL NETWORKS AND ITS APPLICATION in 4-LINK SCARA ROBOT IDENTIFICATION
...Show More Authors

In this research the results of applying Artificial Neural Networks with modified activation function to perform the online and offline identification of four Degrees of Freedom (4-DOF) Selective Compliance Assembly Robot Arm (SCARA) manipulator robot will be described. The proposed model of identification strategy consists of a feed-forward neural network with a modified activation function that operates in parallel with the SCARA robot model. Feed-Forward Neural Networks (FFNN) which have been trained online and offline have been used, without requiring any previous knowledge about the system to be identified. The activation function that is used in the hidden layer in FFNN is a modified version of the wavelet function. This approach ha

... Show More
Preview PDF
Publication Date
Thu Jan 01 2009
Journal Name
Computer And Information Science 2009
The Stochastic Network Calculus Methodology
...Show More Authors

Home Computer and Information Science 2009 Chapter The Stochastic Network Calculus Methodology Deah J. Kadhim, Saba Q. Jobbar, Wei Liu & Wenqing Cheng Chapter 568 Accesses 1 Citations Part of the Studies in Computational Intelligence book series (SCI,volume 208) Abstract The stochastic network calculus is an evolving new methodology for backlog and delay analysis of networks that can account for statistical multiplexing gain. This paper advances the stochastic network calculus by deriving a network service curve, which expresses the service given to a flow by the network as a whole in terms of a probabilistic bound. The presented network service curve permits the calculation of statistical end-to-end delay and backlog bounds for broad

... Show More
View Publication
Scopus (1)
Crossref (2)
Scopus Crossref
Publication Date
Thu Dec 15 2022
Journal Name
Journal Of Petroleum Research And Studies
Selection of an Optimum Drilling Fluid Model to Enhance Mud Hydraulic System Using Neural Networks in Iraqi Oil Field
...Show More Authors

In drilling processes, the rheological properties pointed to the nature of the run-off and the composition of the drilling mud. Drilling mud performance can be assessed for solving the problems of the hole cleaning, fluid management, and hydraulics controls. The rheology factors are typically termed through the following parameters: Yield Point (Yp) and Plastic Viscosity (μp). The relation of (YP/ μp) is used for measuring of levelling for flow. High YP/ μp percentages are responsible for well cuttings transportation through laminar flow. The adequate values of (YP/ μp) are between 0 to 1 for the rheological models which used in drilling. This is what appeared in most of the models that were used in this study. The pressure loss

... Show More
View Publication
Crossref (2)
Crossref
Publication Date
Thu Sep 05 2013
Journal Name
Eng. & Tech. Journal
Snubber Network Design for Triac Driving Single – Phase Industrial Heater by Applying Fuzzy Logic Method
...Show More Authors

Power switches require snubbing networks for driving single – phase industrial heaters. Designing these networks, for controlling the maximum allowable rate of rise of anode current (di/dt) and excessive anode – cathode voltage rise (dv/dt) of power switching devices as thyristors and Triacs, is usually achieved using conventional methods like Time Constant Method (TCM), resonance Method (RM), and Runge-Kutta Method (RKM). In this paper an alternative design methodology using Fuzzy Logic Method (FLM) is proposed for designing the snubber network to control the voltage and current changes. Results of FLM, with fewer rules requirements, show the close similarity with those of conventional design methods in such a network of a Triac drivin

... Show More
View Publication Preview PDF