Nowadays, internet security is a critical concern; the One of the most difficult study issues in network security is "intrusion detection". Fight against external threats. Intrusion detection is a novel method of securing computers and data networks that are already in use. To boost the efficacy of intrusion detection systems, machine learning and deep learning are widely deployed. While work on intrusion detection systems is already underway, based on data mining and machine learning is effective, it requires to detect intrusions by training static batch classifiers regardless considering the time-varying features of a regular data stream. Real-world problems, on the other hand, rarely fit into models that have such constraints. Furthermore, various uses in the real world, Data distributions in intrusion detection systems, for example, are non-stationary, which produce concept drift over time or non-stationary learning. The word "concept drift" is used to describe the process of changing one's mind about something in an online-supervised learning scenario, the connection between the input data and the target variable changes over time. We define adaptive learning, classify existing concept drift strategies, evaluate the most typical, distinct, and widely used approaches and algorithms, describe adaptive algorithm assessment methodology, and show a collection of examples, all of this is based on the assumption that you have a basic understanding of supervised learning. The survey examines the various aspects of concept drift in a comprehensive manner in order to think about the current fragmented "state-of-the-art". As a result, which intends to give scholars, industry analysts, and practitioners a comprehensive introduction to idea drift adaptability.
In this paper, an algorithm through which we can embed more data than the
regular methods under spatial domain is introduced. We compressed the secret data
using Huffman coding and then this compressed data is embedded using laplacian
sharpening method.
We used Laplace filters to determine the effective hiding places, then based on
threshold value we found the places with the highest values acquired from these filters
for embedding the watermark. In this work our aim is increasing the capacity of
information which is to be embedded by using Huffman code and at the same time
increasing the security of the algorithm by hiding data in the places that have highest
values of edges and less noticeable.
The perform
For businesses that provide delivery services, the efficiency of the delivery process in terms of punctuality is very important. In addition to increasing customer trust, efficient route management, and selection are required to reduce vehicle fuel costs and expedite delivery. Some small and medium businesses still use conventional methods to manage delivery routes. Decisions to manage delivery schedules and routes do not use any specific methods to expedite the delivery settlement process. This process is inefficient, takes a long time, increases costs and is prone to errors. Therefore, the Dijkstra algorithm has been used to improve the delivery management process. A delivery management system was developed to help managers and drivers
... Show MoreIn this paper the queuing system (M/Er/1/N) has been considered in equilibrium. The method of stages introduced by Erlang has been used. The system of equations which governs the equilibrium probabilities of various stages has been given. For general N the probability of j stages of service are left in the system, has been introduced. And the probability for the empty system has been calculated in the explicit form.
Carbonate reservoirs are an essential source of hydrocarbons worldwide, and their petrophysical properties play a crucial role in hydrocarbon production. Carbonate reservoirs' most critical petrophysical properties are porosity, permeability, and water saturation. A tight reservoir refers to a reservoir with low porosity and permeability, which means it is difficult for fluids to move from one side to another. This study's primary goal is to evaluate reservoir properties and lithological identification of the SADI Formation in the Halfaya oil field. It is considered one of Iraq's most significant oilfields, 35 km south of Amarah. The Sadi formation consists of four units: A, B1, B2, and B3. Sadi A was excluded as it was not filled with h
... Show MoreThe internationalization of the Libyan crisis and its accompanying militarization of the conflict have played a vital role in hindering to reach a comprehensive political settlement solution in Libya. The increasing international greediness in the Libyan energy resources and the geopolitical importance of the Libyan State led to the involvement of many international and regional powers in this crisis and transformed the Libyan crisis into “proxy war”. Moreover, the Turkish direct military intervention in the Libyan crisis is considered as one of the main constraints facing the international and regional efforts to settle the Libyan crisis as a result of the Turkish insistence on its military existence in Libya to preserve i
... Show MoreBackground: Mother-infant bonding is an important psychological step postpartum and disturbed relationship may carry dramatic consequences as a psychological disorder which may affect the periodontal health of the mother. The aim of the present study was to assess the effect of the postpartum Mother-infant bonding on their periodontal condition. Materials and Methods: Mothers in the postpartum period with age range 20-35 years were subjected to postpartum Bonding Questionnaire (PBQ). Periodontal health status was assessed by measuring probing pocket depth and clinical attachment level. Results: The mean values of both probing pocket depth (PPD) and clinical attachment loss (CAL) were higher among disordered mothers than mothers with normal
... Show More<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show MoreThe fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t