By optimizing the efficiency of a modular simulation model of the PV module structure by genetic algorithm, under several weather conditions, as a portion of recognizing the ideal plan of a Near Zero Energy Household (NZEH), an ideal life cycle cost can be performed. The optimum design from combinations of NZEH-variable designs, are construction positioning, window-to-wall proportion, and glazing categories, which will help maximize the energy created by photovoltaic panels. Comprehensive simulation technique and modeling are utilized in the solar module I-V and for P-V output power. Both of them are constructed on the famous five-parameter model. In addition, the efficiency of the PV panel is established by the genetic algorithm under the standard test conditions (STC) and a comparison between the theoretical and experimental results is done to achieve maximum performance ranging from 0.15 to 0.16, particularly with an error of about - 0.333 for an experimental power of 30 Watts compared with the theoretical power of 30.1 Watts. The results obtained by the genetic algorithm give the best value for efficiency at the range of 16% to 17% of solar radiation, from 500–600 W/m2. These values are almost identical to the efficiency obtained from the results of the operation, where the best value for efficiency in the experimental results was seen to be 15.7%.
The corrosion protection of low carbon steel in 2.5 M HCl solution by kiwi juice was studied at different temperatures and immersion times by weight loss technique. To study the determination of the optimum conditions from statistical design in evaluation of a corrosion inhibitor, three variables, were considered as the most dominant variables. These variables are: temperature, inhibitor concentration (extracted kiwi juice) and immersion time at static conditions.
These three variables are manipulated through the experimental work using central composite rotatable Box – Wilson Experimental Design (BWED) where second order polynomial model was proposed to correlate the studied variables with the corrosion rate o
... Show MoreRecently Genetic Algorithms (GAs) have frequently been used for optimizing the solution of estimation problems. One of the main advantages of using these techniques is that they require no knowledge or gradient information about the response surface. The poor behavior of genetic algorithms in some problems, sometimes attributed to design operators, has led to the development of other types of algorithms. One such class of these algorithms is compact Genetic Algorithm (cGA), it dramatically reduces the number of bits reqyuired to store the poulation and has a faster convergence speed. In this paper compact Genetic Algorithm is used to optimize the maximum likelihood estimator of the first order moving avergae model MA(1). Simulation results
... Show MoreAbstract: The utility of DNA sequencing in diagnosing and prognosis of diseases is vital for assessing the risk of genetic disorders, particularly for asymptomatic individuals with a genetic predisposition. Such diagnostic approaches are integral in guiding health and lifestyle decisions and preparing families with the necessary foreknowledge to anticipate potential genetic abnormalities. The present study explores implementing a define-by-run deep learning (DL) model optimized using the Tree-structured Parzen estimator algorithm to enhance the precision of genetic diagnostic tools. Unlike conventional models, the define-by-run model bolsters accuracy through dynamic adaptation to data during the learning process and iterative optimization
... Show MoreMost recognition system of human facial emotions are assessed solely on accuracy, even if other performance criteria are also thought to be important in the evaluation process such as sensitivity, precision, F-measure, and G-mean. Moreover, the most common problem that must be resolved in face emotion recognition systems is the feature extraction methods, which is comparable to traditional manual feature extraction methods. This traditional method is not able to extract features efficiently. In other words, there are redundant amount of features which are considered not significant, which affect the classification performance. In this work, a new system to recognize human facial emotions from images is proposed. The HOG (Histograms of Or
... Show MoreThe research aims to prepare preventive exercises in the boot camp style to enhance the efficiency of the ankle joint and reduce its injuries for young triple jump players, and to determine the effect of preventive exercises on improving the efficiency of the ankle joint. The researchers assumed statistically significant differences between the pre-and posttests in the research variables. The experimental approach was adopted to suit it, and the research sample was chosen from young triple jump players. The preventive approach prepared by the researchers was applied to the sample, and it included preventive exercises in the boot camp style with and without tools. The researchers concluded that preventive exercises in a boot camp style have
... Show MoreThis study investigated a novel application of forward osmosis (FO) for oilfield produced water treatment from the East Baghdad oilfield affiliated to the Midland Oil Company (Iraq). FO is a part of a zero liquid discharge system that consists of oil skimming, coagulation/flocculation, forward osmosis, and crystallization. Treatment of oilfield produced water requires systems that use a sustainable driving force to treat high-ionic-strength wastewater and have the ability to separate a wide range of contaminants. The laboratory-scale system was used to evaluate the performance of a cellulose triacetate hollow fiber CTA-HF membrane for the FO process. In this work, sodium chloride solution was used as a feed solution (FS) with a concentratio
... Show MoreThe fast evolution of cyberattacks in the Internet of Things (IoT) area, presents new security challenges concerning Zero Day (ZD) attacks, due to the growth of both numbers and the diversity of new cyberattacks. Furthermore, Intrusion Detection System (IDSs) relying on a dataset of historical or signature‐based datasets often perform poorly in ZD detection. A new technique for detecting zero‐day (ZD) attacks in IoT‐based Conventional Spiking Neural Networks (CSNN), termed ZD‐CSNN, is proposed. The model comprises three key levels: (1) Data Pre‐processing, in this level a thorough cleaning process is applied to the CIC IoT Dataset 2023, which contains both malicious and t
This paper presents the results of experimental investigations to predict the bearing capacity of square footing on geogrid-reinforced loose sand by performing model tests. The effects of several parameters were studied in order to study the general behavior of improving the soil by using the geogrid. These parameters include the eccentricity value, depth of first layer of reinforcement, and vertical spacing of reinforcement layers. The results of the experimental work indicated that there was an optimum reinforcement embedment depth at which the bearing capacity was the highest when single-layer reinforcement was used. The increase of (z/B) (vertical spacing of reinforcement layer/width of footing) above 1.5 has no effect on the re
... Show MoreWater samples were collected from output of water for Al-Wahda plant where located in al-karrada area in Baghdad city to study water contamination with bacteria, fungi and Algae. The study lasted one year started on August, 2016 to July,2017.Results were acquired according to two tests performed, the first is biological test included total coliform,E.coli, pseudomonas aeruginosa, total fungi, Diatom and non Diatom Algae and the second is physiochemical test included temperature, turbidity and residual chlorine. The results of bacteria were within the permitted specification in the Iraqi standards no. 14/2270 for the year 2015 except August was exceeded the permitted standard for total coliform, it was 1.1< cell/100 ml.Total Fungi, Dia
... Show More