One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p
... Show MoreWireless sensor applications are susceptible to energy constraints. Most of the energy is consumed in communication between wireless nodes. Clustering and data aggregation are the two widely used strategies for reducing energy usage and increasing the lifetime of wireless sensor networks. In target tracking applications, large amount of redundant data is produced regularly. Hence, deployment of effective data aggregation schemes is vital to eliminate data redundancy. This work aims to conduct a comparative study of various research approaches that employ clustering techniques for efficiently aggregating data in target tracking applications as selection of an appropriate clustering algorithm may reflect positive results in the data aggregati
... Show MoreData scarcity is a major challenge when training deep learning (DL) models. DL demands a large amount of data to achieve exceptional performance. Unfortunately, many applications have small or inadequate data to train DL frameworks. Usually, manual labeling is needed to provide labeled data, which typically involves human annotators with a vast background of knowledge. This annotation process is costly, time-consuming, and error-prone. Usually, every DL framework is fed by a significant amount of labeled data to automatically learn representations. Ultimately, a larger amount of data would generate a better DL model and its performance is also application dependent. This issue is the main barrier for
Prediction of daily rainfall is important for flood forecasting, reservoir operation, and many other hydrological applications. The artificial intelligence (AI) algorithm is generally used for stochastic forecasting rainfall which is not capable to simulate unseen extreme rainfall events which become common due to climate change. A new model is developed in this study for prediction of daily rainfall for different lead times based on sea level pressure (SLP) which is physically related to rainfall on land and thus able to predict unseen rainfall events. Daily rainfall of east coast of Peninsular Malaysia (PM) was predicted using SLP data over the climate domain. Five advanced AI algorithms such as extreme learning machine (ELM), Bay
... Show MoreAn experimental and theoretical works were carried out to model the wire condenser in the domestic refrigerator by calculating the heat transfer coefficient and pressure drop and finding the optimum performance. The two methods were used for calculation, zone method, and an integral method. The work was conducted by using two wire condensers with equal length but different in tube diameters, two refrigerants, R-134a and R-600a, and two different compressors matching the refrigerant type. In the experimental work, the optimum charge was found for the refrigerator according to ASHRAE recommendation. Then, the tests were done at 32˚C ambient temperature in a closed room with dimension (2m*2m*3m). The results showed that th
... Show MoreStudying the past for its importance and connection with the present is reflected in a relative scale in the light of data and thought of the predecessors of a great nation like the Mesopotamia, where its civilization flourished and rose since the ancient times, which inspires the present with inherited meanings that might be an entity or recognized symbols in the establishment of a vision, system or architectural building. The researcher has crystallized the description of the past to enhance the vision of the present within what is required by the interior design specialty about the historical origins of education and the design of schools in the Mesopotamia, in addition to its ethnic and environmental specificity and the moral content
... Show MoreSince the beginning of the last century, the competition for water resources has intensified dramatically, especially between countries that have no agreements in place for water resources that they share. Such is the situation with the Euphrates River which flows through three countries (Turkey, Syria, and Iraq) and represents the main water resource for these countries. Therefore, the comprehensive hydrologic investigation needed to derive optimal operations requires reliable forecasts. This study aims to analysis and create a forecasting model for data generation from Turkey perspective by using the recorded inflow data of Ataturk reservoir for the period (Oct. 1961 - Sep. 2009). Based on 49 years of real inflow data
... Show MoreAbstract:
Research Topic: Ruling on the sale of big data
Its objectives: a statement of what it is, importance, source and governance.
The methodology of the curriculum is inductive, comparative and critical
One of the most important results: it is not permissible to attack it and it is a valuable money, and it is permissible to sell big data as long as it does not contain data to users who are not satisfied with selling it
Recommendation: Follow-up of studies dealing with the provisions of the issue
Subject Terms
Judgment, Sale, Data, Mega, Sayings, Jurists
In the course of generating a library of open-chain epothilones, we discovered a new class of small molecule anticancer agents that has no effect on tubulin but instead kills selected cancer cell lines by harnessing reactive oxygen species in an iron-dependent manner.
Five serological methods for detection of Brucella were compaired in this study, Four of the methods are commonely used in the detections:- 1-Rose-Bengal: as primary screening test which depends on detecting antibodies in the blood serum. 2-IFAT: which detects IgG and IgM antibodies in the serum. 3-ELISA test: which detects IgG antibodies in the serum. 4-2ME test: which detects IgG antibodies The fifth methods. It was developed by a reasercher in one of the health centers in Baghdad. It was given the name of spot Immune Assay (SIA). Results declares that among (100) samples of patients blood, 76, 49, 49, 37, and 28. samples were positive to Rose Bengal, ELISA, SIA, 2ME and IFAT tests, respectively. When efficiency, sensitivity and specific
... Show More