The mucilage from the seeds of Lallemantia royleana family Labiatae was extracted and subjected to preformulation study for evaluation of its suitability for use as suspending agent. Furosemide suspensions were prepared using (1.5% w/v) of the extracted Lallemantia royleana mucilage, (1.5% w/v) chitosan and (0.35% w/v) xanthan gum. The mucilage was white in color and the average yield of dried mucilage obtained from L.royleana nutlets was 14 % w/w of the seeds used. It is sparingly soluble in water but swells in contact with it, giving a highly viscous solution. It is slightly acidic to neutral. It was found that the extracted natural mucilage of Lallemantia royleana exhibited a higher viscosity profil
... Show MoreThis study was conducted to determine the Immuno – globulins and complements quantitatively. The result revealed that the concentration of Immunoglobulin M(IgM) was increased significantly in patient group comparing with control group . The concentration of complement protein C4 was increased significantly in patient group comparing with control group.IgG of Candida albicans was detected by using ELISA Technique, the result indicated also that this antibody was found in 628% of the women who infected with Vulvovaginal Candidiasis. The sensitivity and specificity of the test were 63% and 89% respectively.
Spatial data observed on a group of areal units is common in scientific applications. The usual hierarchical approach for modeling this kind of dataset is to introduce a spatial random effect with an autoregressive prior. However, the usual Markov chain Monte Carlo scheme for this hierarchical framework requires the spatial effects to be sampled from their full conditional posteriors one-by-one resulting in poor mixing. More importantly, it makes the model computationally inefficient for datasets with large number of units. In this article, we propose a Bayesian approach that uses the spectral structure of the adjacency to construct a low-rank expansion for modeling spatial dependence. We propose a pair of computationally efficient estimati
... Show MoreEstimation of the unknown parameters in 2-D sinusoidal signal model can be considered as important and difficult problem. Due to the difficulty to find estimate of all the parameters of this type of models at the same time, we propose sequential non-liner least squares method and sequential robust M method after their development through the use of sequential approach in the estimate suggested by Prasad et al to estimate unknown frequencies and amplitudes for the 2-D sinusoidal compounds but depending on Downhill Simplex Algorithm in solving non-linear equations for the purpose of obtaining non-linear parameters estimation which represents frequencies and then use of least squares formula to estimate
... Show More