The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
In this work ,pure and doped(CdO)thin films with different concentration of V2O5x (0.0, 0.05, 0.1 ) wt.% have been prepared on glass substrate at room temperature using Pulse Laser Deposition technique(PLD).The focused Nd:YAG laser beam at 800 mJ with a frequency second radiation at 1064 nm (pulse width 9 ns) repetition frequency (6 Hz), for 500 laser pulses incident on the target surface At first ,The pellets of (CdO)1-x(V2O5)x at different V2O5 contents were sintered to a temperature of 773K for one hours.Then films of (CdO)1-x(V2O5)x have been prepared.The structure of the thin films was examined by using (XRD) analysis..Hall effect has been measured in orded to know the type of conductivity, Finally the solar cell and the effici
... Show MoreThe parameter and system reliability in stress-strength model are estimated in this paper when the system contains several parallel components that have strengths subjects to common stress in case when the stress and strengths follow Generalized Inverse Rayleigh distribution by using different Bayesian estimation methods. Monte Carlo simulation introduced to compare among the proposal methods based on the Mean squared Error criteria.
Background: The appointment system is a common practice in primary health care clinics in developed countries. The patients and health care providers in the primary health care setting perceived the appointment system as an indicator of good quality service.
Objective: The aim of this study was to survey patients’ and health care providers’ attitudes towards the introduction of an appointment system and their satisfaction with the existing ‘walk-in’ system in the primary health care setting.
Subjects and Methods: A questionnaire survey was conducted included a convenient sample of 234 patients as well as 76 health care providers from two primary health care center
... Show MoreIn the recent decade, injection of nanoparticles (NPs) into underground formation as liquid nanodispersions has been suggested as a smart alternative for conventional methods in tertiary oil recovery projects from mature oil reservoirs. Such reservoirs, however, are strong candidates for carbon geo-sequestration (CGS) projects, and the presence of nanoparticles (NPs) after nanofluid-flooding can add more complexity to carbon geo-storage projects. Despite studies investigating CO2 injection and nanofluid-flooding for EOR projects, no information was reported about the potential synergistic effects of CO2 and NPs on enhanced oil recovery (EOR) and CGS concerning the interfacial tension (γ) of CO2-oil system. This study thus extensively inves
... Show MoreThe research seeks to highlight the importance of digital finance in banking by providing financial and banking services and its role in improving the access of financial services to customers at the farthest possible point by using modern technology to finance their needs by granting them cash credits through electronic payment tools to facilitate them and shorten time and effort as well as Low cost, and this cannot be achieved without concerted efforts and the provision of basic infrastructure that includes connecting the Internet to all targeted areas, whether cities or rural areas, as well as distributing the largest possible number of ATMs and sending specialized teams to those areas that develop in customers the culture of digital
... Show MoreThe physical substance at high energy level with specific circumstances; tend to behave harsh and complicated, meanwhile, sustaining equilibrium or non-equilibrium thermodynamic of the system. Measurement of the temperature by ordinary techniques in these cases is not applicable at all. Likewise, there is a need to apply mathematical models in numerous critical applications to measure the temperature accurately at an atomic level of the matter. Those mathematical models follow statistical rules with different distribution approaches of quantities energy of the system. However, these approaches have functional effects at microscopic and macroscopic levels of that system. Therefore, this research study represents an innovative of a wi
... Show MoreThe development of Web 2.0 has improved people's ability to share their opinions. These opinions serve as an important piece of knowledge for other reviewers. To figure out what the opinions is all about, an automatic system of analysis is needed. Aspect-based sentiment analysis is the most important research topic conducted to extract reviewers-opinions about certain attribute, for instance opinion-target (aspect). In aspect-based tasks, the identification of the implicit aspect such as aspects implicitly implied in a review, is the most challenging task to accomplish. However, this paper strives to identify the implicit aspects based on hierarchical algorithm incorporated with common-sense knowledge by means of dimensionality reduction.
Copula modeling is widely used in modern statistics. The boundary bias problem is one of the problems faced when estimating by nonparametric methods, as kernel estimators are the most common in nonparametric estimation. In this paper, the copula density function was estimated using the probit transformation nonparametric method in order to get rid of the boundary bias problem that the kernel estimators suffer from. Using simulation for three nonparametric methods to estimate the copula density function and we proposed a new method that is better than the rest of the methods by five types of copulas with different sample sizes and different levels of correlation between the copula variables and the different parameters for the function. The
... Show MoreAbstract
Most universities in the world are largely committed to creating credible and transparent admission standards that provide justice in admission and have the ability to predict students' performance in their chosen programs. Hence, this study aimed to reveal the predictive ability of the acceptance criteria for the level of performance of master's students in the College of Education at Sultan Qaboos University. Quantitative data were collected from (115) students' admission documents for those accepted in the postgraduate programs for the academic year 2019-2020, and GPA data was collected from students’ transcripts for the fall semester of 2019. Qualitative data were also collected from the interviews
... Show More