The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.

Objectives: The study aims to assess and evaluate the caregivers knowledge about management of the children with growth hormone deficiency and to find out the relationship between caregivers kowledge and caregivers age, gender, number of individual in house hold, Date of treatment started ,Caregivers level education and economic status Methodology: Quazi expermental study design was carried out at (Child's Central Teaching Hospital, Medical City of Al Imamian Al Khadhmain Teaching Hospital, and National Centre for Treatment and Research of Diabetes,Specialized Center for Endocrine Diseases and Diabetes, and Department of Medical City Children Welfare Teaching Hospital started from
... Show MoreThis study tests the effect of a large number of independent variables that control the growth of the total productivity, which amounted to 112 variables, gathered from what is mentioned in the specialized theoretical and applied literature. The data for these variables were taken from global reports of sound international organizations and reliable databases covering the period 1991-2016. The data of the dependent variable, the growth of the total factor productivity, were taken from the database of the world development indicators. The study covered 61 countries for which data were available. The study included three regression models to explain
... Show MoreThe aim of this article is to solve the Volterra-Fredholm integro-differential equations of fractional order numerically by using the shifted Jacobi polynomial collocation method. The Jacobi polynomial and collocation method properties are presented. This technique is used to convert the problem into the solution of linear algebraic equations. The fractional derivatives are considered in the Caputo sense. Numerical examples are given to show the accuracy and reliability of the proposed technique.
The current research aims to train students to take benefit of their studies to analyze and taste the artistic works as one of the most important components of the academic structure for students specializing in visual arts; then to activate this during training them the methods of teaching. Consequently, the capabilities of mind maps were employed as a tool that would be through freeing each student to analyze a model of artistic work and think about his analytical principles according to what he knows. Then, a start-up with a new stage revolves around the possibility of transforming this analysis into a teaching style by thinking about how the student would do. The same person who undertook the technical analysis should offer this work
... Show MoreHuge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zig
... Show MoreThis study seeks to address the impact of marketing knowledge dimensions (product, price, promotion, distribution) on the organizational performance in relation to a number of variables which are (efficiency, effectiveness, market share, customer satisfaction), and seeks to reveal the role of marketing knowledge in organizational performance.
In order to achieve the objective of the study the researcher has adopted a hypothetical model that reflects the logical relationships between the variables of the study. In order to reveal the nature of these relationships, several hypotheses have been presented as tentative solutions and this study seeks to verify the validity of these hypotheses.
... Show More