The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient communication between the sensors, gateway devices, and the cloud server. The system was tested on an operational motors dataset, five machine learning algorithms, namely k-nearest neighbor (KNN), supported vector machine (SVM), random forest (RF), linear regression (LR), and naive bayes (NB), are used to analyze and process the collected data to predict motor failures and offer maintenance recommendations. Results demonstrate the random forest model achieves the highest accuracy in failure prediction. The solution minimizes downtime and costs through optimized maintenance schedules and decisions. It represents an Industry 4.0 approach to sustainable smart manufacturing.
Abstract Since unmethylated CpG motifs are more common in DNA from bacteria than vertebrates, and the unmethylated CpG motif has recently been reported to have stimulatory effects on lymphocytes, we speculated that bacterial DNA may induce inflammation in the urinary tract. To determine the role of bacterial DNA in lower UTI, we intraurethrally injected prokaryotic DNA (extracted from E. coli) in white mice and performed histopathological study for the kidneys and urinary bladders, 24 h after the exposure. The results showed infiltration of inflammatory cells, shrinkage of glomerulus and increase the capsular space, as well as edema formation in kidney tissues. Moreover, urinary bladder sections showed infiltration of inflammatory cells.
... Show MoreActive worms have posed a major security threat to the Internet, and many research efforts have focused on them. This paper is interested in internet worm that spreads via TCP, which accounts for the majority of internet traffic. It presents an approach that use a hybrid solution between two detection algorithms: behavior base detection and signature base detection to have the features of each of them. The aim of this study is to have a good solution of detecting worm and stealthy worm with the feature of the speed. This proposal was designed in distributed collaborative scheme based on the small-world network model to effectively improve the system performance.
The research aims to extrapolate the repercussions of the use of expert systems in the work of the external auditor on the quality of audit, as the research problem was that despite the use of these techniques in audit work, there is a problem related to the efficiency and effectiveness of these technological systems used in audit work, the feasibility of their use and the extent of their impact: The quality of the audit process.
The researchers adopted the questionnaire as a tool for collecting study data from a community composed of auditors in auditing offices and companies in Iraq, and the auditors of the Iraqi Federal Financial Supervision Bureau. The number of recovered and valid qu
... Show MoreAfter the outbreak of COVID-19, immediately it converted from epidemic to pandemic. Radiologic images of CT and X-ray have been widely used to detect COVID-19 disease through observing infrahilar opacity in the lungs. Deep learning has gained popularity in diagnosing many health diseases including COVID-19 and its rapid spreading necessitates the adoption of deep learning in identifying COVID-19 cases. In this study, a deep learning model, based on some principles has been proposed for automatic detection of COVID-19 from X-ray images. The SimpNet architecture has been adopted in our study and trained with X-ray images. The model was evaluated on both binary (COVID-19 and No-findings) classification and multi-class (COVID-19, No-findings
... Show MoreThe aim of our current study was to identify the effect of particulate matter of both types (PM2.5 and PM10) resulting from hookah smoking on the hemopoietic system of workers (smokers) in closed cafes. This study included six stations (cafes) on the Rusafa side of Baghdad city and conducted a blood test that included a complete blood count (CBC). A multifunctional air quality detector measured both types of particulate matter in the morning and evening. The study included 30 men (workers and smokers) and 30 men (non-smokers), whose ages ranged from 20 to 40 years. The study found that smokers had an increase in white blood cells and red blood cells, as well as an increase in the percentage of hemoglobin (HGB), hematocrit (HCT), the mean co
... Show MoreIn this paper, we deal with a dynamical system that can demonstrate a chaotic attractor of Rossleroscillator. We simulate the Rosslerequations numerically then we investigate the model experimentally. Numerically, the Rossler parameter a and b were fixed and c was changed.The evolution of the system exhibits period, period-doubling, second period doubling, and chaos when control parameters are changed. This evolution can be seen by analyze the time series, the bifurcation diagrams and phase space. Experimentally, the evolution of the system exhibited the same numerical behavior by changing the resistance (Rv) in Rossler circuit that represent as control parameter.
The current research aims at testing the relationship between organizational immunity and preventing administrative and financial corruption (AFC) in Iraq. The Statistical Package for the Social Sciences program (R& SPSS) was used to analyse the associated questionnaire data. The research problem has examined how to activate the functions of the organizational immune system to enable it to face organizational risks, attempt to prevent administrative and financial corruption, and access the mechanisms by which to develop organizational immunity. A sample of 161 individuals was taken who worked in the Directorate General of Education, Karbala. Also, it was concluded to a lack of memory function for organizational immunity. In a
... Show MoreAtmospheric transmission is disturbed by scintillation, where scintillation caused more beam divergence. In this work target image spot radius was calculated in presence of atmospheric scintillation. The calculation depend on few relevant equation based on atmospheric parameter (for Middle East), tracking range, expansion ratio of applied beam expander's, receiving unit lens F-number, and the laser wavelength besides photodetector parameter. At maximum target range Rmax =20 km, target image radius is at its maximum Rs=0.4 mm. As the range decreases spot radius decreases too, until the range reaches limit (4 km) at which target image spot radius at its minimum value (0.22 mm). Then as the range decreases, spot radius increases due to geom
... Show MoreIn this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show More