The global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap by evaluating SBS and EVA at 2%, 4%, and 6% by weight of asphalt cement, with a focus on their rheological, chemical, and mechanical properties. At the binder level, properties examined included the physical properties: penetration, softening point, viscosity, mass loss due to aging, storage stability, and specific gravity. The Dynamic Shear Rheometer (DSR) was used to assess the high-temperature performance grade (PG) and conduct Multiple Stress Creep Recovery (MSCR) tests. The results revealed that SBS significantly enhanced high-temperature performance, with 4% SBS and 6% SBS achieving PG 100, compared to PG 70 for both the unmodified and EVA-modified binders. At the most critical testing temperature of 76 °C and the highest stress level of 3.2 kPa, SBS-modified binders exhibited the lowest non-recoverable creep compliance (Jnr) and the highest elastic recovery (R), significantly outperforming EVA-modified binders and the reference binder (RB). At the mixture level, dynamic creep testing confirmed the ranking of asphalt mixes in terms of resistance to permanent deformation, with the following order: 4% SBS > 6% SBS > 6% EVA > 4% EVA > 2% SBS > 2% EVA > unmodified mix. These results, further supported by ANOVA analysis, indicate that SBS-modified mixtures exhibited superior rutting resistance compared to EVA-modified and unmodified mixes. This study provides quantitative insights into the comparative performance of SBS and EVA in extreme hot climatic tempertures, reinforcing the superior effectiveness of SBS in enhancing high-temperature properties. Consequently, SBS emerges as the more suitable modifier for regions experiencing extreme hot climatic conditions. Field validation is recommended to confirm these laboratory findings in real-world applications.
The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1
... Show MoreWarm Mix Asphalt (WMA) is a modern energy-saving process that uses environmentally friendly materials, has lower mixing and compaction temperatures, and uses less energy and releases less contaminants than conventional hot mix asphalt. Moisture damage poses one of the main challenges of the material design in asphalt pavements. During its design life, the asphalt pavement is exposed to the effect of moisture from the surrounding environment. This research intends to investigate the role of the polypropylene fibres for modifying the moisture susceptibility for the WMA by using different percentages of polypropylene (namely 2, 4, and 6%) by weight of the binder of the control mixture (WMA). In this paper, the physical characteristics
... Show MoreNanofluid treatment of oil reservoirs is being developed to enhance oil recovery and increase residual trapping capacities of CO2 at the reservoir scale. Recent studies have demonstrated good potential for silica nanoparticles for enhanced oil recovery (EOR) at ambient conditions. Nanofluid composition and exposure time have shown significant effects on the efficiency of EOR. However, there is a serious lack of information regarding the influence of temperature on nanofluid performance; thus the effects of temperature, exposure time and particle size on wettability alteration of oil-wet calcite surface were comprehensively investigated; moreover, the stability of the nanofluids was examined. We found that nanofluid treatment is more efficie
... Show MoreThe present study aims at identifying the effect of organizational pressure with its aspects (management, work team, nature and conditions of work, external environment) on job performance in all its dimensions (commitment and effort made, capabilities and the rapidity of performance, motivation and job satisfaction, work environment) for the university teacher at the Faculty of Economics, Commercial and Management Sciences at the University of Djelfa, Algeria.
In this research, the descriptive analytical approach is used. Data was collected through the distribution of a questionnaire to a sample that included 130 permanent teachers before being analyzed using the (SPSS) statisti
... Show MoreTwo field experiments were conducted during the spring season 2020 in Karbala governorate to study the effect of irrigation systems, irrigation intervals, biofertilizers and polymers on some characteristics of vegetative growth and potato production. The results showed that there were significant differences in the values of the average plant height due to the effect of the double interference between the irrigation system and the improvers, The height of potato plant under any irrigation system was superior when adding conditioners compared to the control treatment, as it reached 48.56, 58.00 and 64.33cm when adding polymer, biofertilizer, and polymers+ biofertilizers, respectively compared with the control treatment of 44.64cm in the surf
... Show MoreIn order to improve the effectiveness, increase the life cycle, and avoid the blade structural failure of wind turbines, the blades need to be perfectly designed. Knowing the flow angle and the geometric characteristics of the blade is necessary to calculate the values of the induction factors (axial and tangential), which are the basis of the Blade Element Momentum theory (BEM). The aforementioned equations form an implicit and nonlinear system. Consequently, a straightforward iterative solution process can be used to solve this problem. A theoretical study of the aerodynamic performance of a horizontal-axis wind turbine blade was introduced using the BEM. The main objective of the current work is to examine the wind turbine blade’s perf
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show MoreThe optimum design is characterized by structural concrete components that can sustain loads well beyond the yielding stage. This is often accomplished by a fulfilled ductility index, which is greatly influenced by the arrangement of the shear reinforcement. The current study investigates the impact of the shear reinforcement arrangement on the structural response of the deep beams using a variety of parameters, including the type of shear reinforcement, the number of lacing bars, and the lacing arrangement pattern. It was found that lacing reinforcement, as opposed to vertical stirrups, enhanced the overall structural response of deep beams, as evidenced by test results showing increases in ultimate loads, yielding, and cracking of
... Show More