The global rise in temperature and the desert climatic conditions prevalent in Middle Eastern countries have exacerbated rutting distress in heavily trafficked highways. Conventional asphalt binders with a high-temperature performance grade (PG 70) have proven inadequate under such extreme conditions, necessitating the development of modified binders with enhanced high-temperature performance. While polymer modification using styrene-butadiene-styrene (SBS), an elastomeric polymer, and ethylene-vinyl acetate (EVA), a plastomeric polymer, has been widely studied, limited research provides a direct comparison of their effectiveness at both the binder and mixture levels under extremely high-temperature conditions. This study addresses this gap by evaluating SBS and EVA at 2%, 4%, and 6% by weight of asphalt cement, with a focus on their rheological, chemical, and mechanical properties. At the binder level, properties examined included the physical properties: penetration, softening point, viscosity, mass loss due to aging, storage stability, and specific gravity. The Dynamic Shear Rheometer (DSR) was used to assess the high-temperature performance grade (PG) and conduct Multiple Stress Creep Recovery (MSCR) tests. The results revealed that SBS significantly enhanced high-temperature performance, with 4% SBS and 6% SBS achieving PG 100, compared to PG 70 for both the unmodified and EVA-modified binders. At the most critical testing temperature of 76 °C and the highest stress level of 3.2 kPa, SBS-modified binders exhibited the lowest non-recoverable creep compliance (Jnr) and the highest elastic recovery (R), significantly outperforming EVA-modified binders and the reference binder (RB). At the mixture level, dynamic creep testing confirmed the ranking of asphalt mixes in terms of resistance to permanent deformation, with the following order: 4% SBS > 6% SBS > 6% EVA > 4% EVA > 2% SBS > 2% EVA > unmodified mix. These results, further supported by ANOVA analysis, indicate that SBS-modified mixtures exhibited superior rutting resistance compared to EVA-modified and unmodified mixes. This study provides quantitative insights into the comparative performance of SBS and EVA in extreme hot climatic tempertures, reinforcing the superior effectiveness of SBS in enhancing high-temperature properties. Consequently, SBS emerges as the more suitable modifier for regions experiencing extreme hot climatic conditions. Field validation is recommended to confirm these laboratory findings in real-world applications.
The photooxidative degradation process of plastics caused by ultraviolet irradiation leads to bond breaking, crosslinking, the elimination of volatiles, formation of free radicals, and decreases in weight and molecular weight. Photodegradation deteriorates both the mechanical and physical properties of plastics and affects their predicted life use, in particular for applications in harsh environments. Plastics have many benefits, while on the other hand, they have numerous disadvantages, such as photodegradation and photooxidation in harsh environments and the release of toxic substances due to the leaching of some components, which have a negative effect on living organisms. Therefore, attention is paid to the design and use of saf
... Show MoreIs the efficiency of physical and your endurance is of great importance for some activities and field, as it whenever the situation has improved student career was able to perform physical exertion more with energy saving efforts, so the identification of physical aptitude and endurance private students, was based on that there are positively correlated the carrying of training and pregnancy fact on the shoulders of the student. In other words, physical aptitude and endurance in your control level that can be shown by the student during the performance of training and competitions. Therefore, lies the importance of research to test physical aptitude and endurance your help to reveal the career of the body in the light of their relationship
... Show MoreThe world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreThe purpose of this research is to highlight the relationship between the administrative investigation and the improvement of institutional performance, and the research sought to achieve a set of cognitive and applied goals. the administrative investigation is the modern trend of managing the offices of the general hginspectors and the main source to build the necessary standards to manage and invest its resources efficiently and effectively required to achieve the goals it seeks. The institutional performance is the cornerstone for the implementation of all tasks and duties carried out by institutions operating within the borders of a particular country, The significant change
... Show MoreIn this research, analytical study for simulating a Fabry-Perot bistable etalon (F-P cavity) filled with a dispersive optimized nonlinear optical material (Kerr type) such as semiconductors Indium Antimonide (InSb). An optimization procedure using reflective (~85%) InSb etalon (~50µm) thick is described. For this etalon with a (50 µm) spot diameter beam, the minimum switching power is (~0.078 mW) and switching time is (~150 ns), leading to a switching energy of (~11.77 pJ) for this device. Also, the main role played by the temperature to change the etalon characteristic from nonlinear to linear dynamics.
A nanocrystalline CdS thin film with 100 nm thickness has been prepared by thermal evaporation technique on glass substrate with substrate temperature of about 423 K. The films annealed under vacuum at different annealing temperature 473, 523 and 573 K. The X-ray diffraction studies show that CdS thin films have a hexagonal polycrystalline structure with preferred orientation at (002) direction. Our investigation showed the grain size of thin films increased from 9.1 to 18.9 nm with increasing the annealing temperature. The optical measurements showed that CdS thin films have direct energy band gap, which decreases with increasing the annealing temperature within the range 3.2- 2.85 eV. The absorbance edge is blue shifted. The absorption
... Show MoreSustainability is providing the needs without compromising the ability of the strategical forming to meet their requirements. The production of warm asphalt mixtures using recycled pavements produces economic and environmentally friendly mixtures, which is the most important advantage of this work. This research aims to determine the effect of recycled asphalt concrete (RAP) on the indirect tensile strength of warm asphalt mixtures and Marshall Properties. Models of warm asphalt mixtures using Aggregate from the Al-Nibaay quarry, Asphalt with a degree of penetration (40-50) from the refinery of the cycle, and obtained Recycled asphalt concrete from Salah Al-Din Road, Al-Ameriya area in Baghdad are prepared. Use five rati
... Show MoreThis paper deals with the preparation of new monomers and polymers which including heterocyclic unit. The diacid chlorides compounds [1-3] were prepared from the reaction of glutaric acid, adipic acid, terephthalic acid with thionyl chloride. Succinic acid reacted with ethanol to produce compound [4]. Compound [4] reacted with hydrazine hydrate to obtain succinic hydrazide [5].Compound [5] reaction with CS2 and KOH in absolute ethanol to produce compound [6].The polymers [7-12] have been created by reacting diacid chlorides compounds [1-3] with compound[5] or [6] in dry pyridine with some drops of DMF. The topology of produced compounds has characterized through their spectral and analytical data as in FT-IR spectra, Thermal analysis [DSC,
... Show MoreIncreasing material prices coupled with the emission of hazardous gases through the production and construction of Hot Mix Asphalt (HMA) has driven a strong movement toward the adoption of sustainable construction technology. Warm Mix Asphalt (WMA) is considered relatively a new technology, which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt. The Resilient modulus (Mr) which can be defined as the ratio of axial pulsating stress to the corresponding recoverable strain, is used to evaluate the relative quality of materials as well as to generate input for pavement design or pavement evaluation and analysis. Based on the aforementioned preface, it is
... Show More