Preferred Language
Articles
/
tBd82IwBVTCNdQwCRwgO
Noise Detection and Removing in Heart Sound Signals via Nuclear Norm Minimization Problems
...Show More Authors

Heart sound is an electric signal affected by some factors during the signal's recording process, which adds unwanted information to the signal. Recently, many studies have been interested in noise removal and signal recovery problems. The first step in signal processing is noise removal; many filters are used and proposed for treating this problem. Here, the Hankel matrix is implemented from a given signal and tries to clean the signal by overcoming unwanted information from the Hankel matrix. The first step is detecting unwanted information by defining a binary operator. This operator is defined under some threshold. The unwanted information replaces by zero, and the wanted information keeping in the estimated matrix. The resulting matrix contains zeros, so the problem is to find a low-rank matrix. Matrix completion is a heuristic NP-hard problem. It is a minimization problem defined by the matrix nuclear norm. In this paper, nuclear norm, and weighted nuclear norm minimization problems are derived to find a low-rank matrix of implemented Hankel matrix from the signal. A Robust Principal Component used to solve a low-rank-sparse matrix finds a low-rank Hankel matrix by solving a minimization problem numerically. The results show that the given methods are efficient in reconstructing and recovering the signals with a rate of more than 96%, with small values of mean square errors

Scopus Crossref
View Publication
Publication Date
Mon Apr 19 2010
Journal Name
Computer And Information Science
Quantitative Detection of Left Ventricular Wall Motion Abnormality by Two-Dimensional Echocardiography
...Show More Authors

Echocardiography is a widely used imaging technique to examine various cardiac functions, especially to detect the left ventricular wall motion abnormality. Unfortunately the quality of echocardiograph images and complexities of underlying motion captured, makes it difficult for an in-experienced physicians/ radiologist to describe the motion abnormalities in a crisp way, leading to possible errors in diagnosis. In this study, we present a method to analyze left ventricular wall motion, by using optical flow to estimate velocities of the left ventricular wall segments and find relation between these segments motion. The proposed method will be able to present real clinical help to verify the left ventricular wall motion diagnosis.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Feb 18 2019
Journal Name
Iraqi Journal Of Physics
Enhancement of gas response of annealed ZnO film for hydrogen gas detection
...Show More Authors

  The mechanism of hydrogen (H2) gas sensor in the range of 50-200 ppm of RF-sputtered annealed zinc oxide (ZnO) and without annealing was studied. The X-ray Diffraction( XRD) results showed that the Zn metal was completely converted to ZnO with a polycrystalline structure. The I–V characteristics of the device (PT/ZnO/Pt) measured at room temperature before and after annealing at 450 oC for4h, from which a linear relationship has been observed. The sensors had a maximum response to H2 at 350 oC for annealing ZnO and showed stable behavior for detecting H2 gases in the range of 50 to 200 ppm. The annealed film exhibited hig

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Mon Dec 02 2019
Journal Name
Technologies And Materials For Renewable Energy, Environment And Sustainability
Effect of thickness variation CdO/PSi thin films on detection of radiation
...Show More Authors

CdO films were deposited on substrates from glass, Silicon and Porous silicon by thermal chemical spray pyrolysis technique with different thicknesses (130 and 438.46) nm. Measurements of X-ray diffraction of CdO thin film proved that the structure of the Polycrystalline is cubic lattice, and its crystallite size is located within nano scale range where the perfect orientation is (200). The results show that the surface’s roughness and the root mean square increased with increasing the thickness of prepared films. The UV-Visible measurements show that the CdO films with different thicknesses possess an allowed direct transition with band gap (4) eV. AFM measurement revealed that the silicon porosity located in nano range. Cadmium oxide f

... Show More
Scopus (2)
Scopus
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Copy Move Image Forgery Detection using Multi-Level Local Binary Pattern Algorithm
...Show More Authors

Digital image manipulation has become increasingly prevalent due to the widespread availability of sophisticated image editing tools. In copy-move forgery, a portion of an image is copied and pasted into another area within the same image. The proposed methodology begins with extracting the image's Local Binary Pattern (LBP) algorithm features. Two main statistical functions, Stander Deviation (STD) and Angler Second Moment (ASM), are computed for each LBP feature, capturing additional statistical information about the local textures. Next, a multi-level LBP feature selection is applied to select the most relevant features. This process involves performing LBP computation at multiple scales or levels, capturing textures at different

... Show More
Crossref
Publication Date
Sun May 11 2014
Journal Name
World Journal Of Experimental Biosciences
Detection of hydrolytic enzymes produced by Azospirillum brasiliense isolated from root soil
...Show More Authors

Publication Date
Tue Jun 20 2023
Journal Name
Baghdad Science Journal
Detection of Autism Spectrum Disorder Using A 1-Dimensional Convolutional Neural Network
...Show More Authors

Autism Spectrum Disorder, also known as ASD, is a neurodevelopmental disease that impairs speech, social interaction, and behavior. Machine learning is a field of artificial intelligence that focuses on creating algorithms that can learn patterns and make ASD classification based on input data. The results of using machine learning algorithms to categorize ASD have been inconsistent. More research is needed to improve the accuracy of the classification of ASD. To address this, deep learning such as 1D CNN has been proposed as an alternative for the classification of ASD detection. The proposed techniques are evaluated on publicly available three different ASD datasets (children, Adults, and adolescents). Results strongly suggest that 1D

... Show More
View Publication Preview PDF
Scopus (29)
Crossref (22)
Scopus Crossref
Publication Date
Tue Jan 18 2022
Journal Name
Photonic Sensors
Arsenic Detection Using Surface Plasmon Resonance Sensor With Hydrous Ferric Oxide Layer
...Show More Authors
Abstract<p>The lethality of inorganic arsenic (As) and the threat it poses have made the development of efficient As detection systems a vital necessity. This research work demonstrates a sensing layer made of hydrous ferric oxide (Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub>) to detect As(III) and As(V) ions in a surface plasmon resonance system. The sensor conceptualizes on the strength of Fe<sub>2</sub>H<sub>2</sub>O<sub>4</sub> to absorb As ions and the interaction of plasmon resonance towards the changes occurring on the sensing layer. Detection sensitivity values for As(III) and As(V) were 1.083 °·ppb<sup>−1</sup> and 0.922 °·ppb<jats></jats></p> ... Show More
View Publication
Scopus (11)
Crossref (7)
Scopus Clarivate Crossref
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Computational Intelligence Systems
Evolutionary Feature Optimization for Plant Leaf Disease Detection by Deep Neural Networks
...Show More Authors

View Publication
Scopus (51)
Crossref (48)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (26)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Wed Sep 20 2023
Journal Name
Journal Of Applied And Natural Science
Detection of some virulence genes (esp, agg, gelE, CylA) in Enterococcus faecalis isolated from different clinical cases at Baghdad
...Show More Authors

The virulent genes are the key players in the ability of the bacterium to cause disease. The products of such genes that facilitate the successful colonization and survival of the bacterium in or cause damage to the host are pathogenicity determinants. This study aimed to investigate the prevalence of virulence factors (esp, agg, gelE, CylA) in E. faecalis isolated from diverse human clinical collected in Iraqi patient , as well as to assess their ability to form biofilm and to determine their haemolytic and gelatinase activities. Thirty-two isolates of bacteria Enterococcus faecalis were obtained, including 15 isolates (46.87%) of the urine, 6 isolates (18.75%) for each of the stool and uterine secretions, and 5 isolates (15.62%) of the wo

... Show More
Preview PDF