Steel–concrete–steel (SCS) structural systems have economic and structural advantages over traditional reinforced concrete; thus, they have been widely used. The performance of concrete made from recycled rubber aggregate from scrap tires has been evaluated since the early 1990s. The use of rubberized concrete in structural construction remains necessary because of its high impact resistance, increases ductility, and produces a lightweight concrete; therefore, it adds such important properties to SCS members. In this research, the use of different concrete core materials in SCS was examined. Twelve SCS specimens were subjected to push-out monotonic loading for inspecting their mechanical performance. One specimen was constructed from conventional normal weight concrete core, while the other specimens were constructed with modified core materials by either partial replacement of the coarse aggregate with crumb rubber (CR), the addition of oil palm fibre (OPF) to the concrete as a volume fraction of concrete, or both in the concrete cores. The investigated push-out specimens have a height of 450 mm and constructed from two hollow steel tubes with a square cross section of 100 mm and 5 mm in thickness which fixed to concrete prism using bolt end shear connectors. The detection of the mode of failure, load–slip as well as ductility behaviour, and the energy absorption capacity was investigated. The results revealed an improvement in the energy absorption (EA) capacity averagely by 55% for the specimen with 15% CR and 1.1% addition of OPF as a volume fraction of concrete in comparison with the reference specimens due to the high shear resistance.
This study focuses on the modeling of manufactured damper when used in steel buildings. The main aim of the manufactured dampers is to protect the steel buildings from the damaging effects that may result due to earthquakes by introducing an extra damping in addition to the traditional damping.
Only Pure Manufactured Dampers, has been considered in this study. Viscous modeling of damping is generally preferred in structural engineering as it leads to a linear model then it has been used during this study to simulate the behavior of the Pure Manufactured Damper.
After definition of structural parameters of a manufactured damper (its stiffness and its damping) it can be used as a structural element that can be added to a mathematica
Abstract
Machining residual stresses correlate very closely with the cutting parameters and the tool geometries. This research work aims to investigate the effect of cutting speed, feed rate and depth of cut on the surface residual stress of steel AISI 1045 after face milling operation. After each milling test, the residual stress on the surface of the workpiece was measured by using X-ray diffraction technique. Design of Experiment (DOE) software was employed using the response surface methodology (RSM) technique with a central composite rotatable design to build a mathematical model to determine the relationship between the input variables and the response. The results showed that both
... Show MoreIn the present study, MIG welding is carried out on low carbon steel type (AISI 1015) by using electrode ER308L of 1.5mm diameter with direct current straight polarity (DCSP). The joint geometry is of a single V-butt joint with one pass welding stroke for different plate thicknesses of 6, 8, and 10 mm. In welding experiments, AISI 1015 plates with dimensions of 200×100mm and edge angle of 60o from both sides are utilized. In this work, three main parameters related to MIG welding process are investigated, which are welding current, welding speed, heat input and plate thickness, and to achieve that three groups of plates are employed each one consists of three plates. The results indicate that increasing the weld heat input (t
... Show MoreProstheses are used as an alternative to organs lost from the body. Flex-Foot Cheetah is considered one of the lower limb prostheses used in high-intensity activities such as running. This research focused on testing two samples of Flex-Foot Cheetah manufactured of two various materials (carbon, glass) with polyester and compare between them to find the foot with the best performance in running on the level of professional athlete. In the numerical analysis, the maximum principal stress, maximum principal elastic strain, strain energy; finally, the blade total deformation were calculated for both feet. In experimental work, the load-deflection test was done for foot to calculate the bending the results were very close to
... Show MoreSummary of the researchThe style of playing in basketball, represented by the performance of complex movements as a result of the rapid movement and changing positions is one of the advantages of this game, which adds beauty and excitement to this game, so it was necessary for players to use forms of mobility and complex skills mixed with precision and speed, In the attack to overcome the difficult positions defenders are trying to impose on the attacking team.Complex offensive skills in basketball are difficult skills that a player can not easily perform so they need to be specially trained to handle those situations so that the player can use them in difficult situations.The research community represented a sample of Baghdad players for t
... Show MoreIn this research we present An idea of setting up same split plots experiments in many locations and many periods by Latin Square Design. This cases represents a modest contribution in area of design and analysis of experiments. we had written (theoretically) the general plans, the mathematical models for these experiments, and finding the derivations of EMS for each component (source) of sources of variation of the analysis of variance tables which uses for the statistical analysis for these expirements
Unconfined Compressive Strength is considered the most important parameter of rock strength properties affecting the rock failure criteria. Various research have developed rock strength for specific lithology to estimate high-accuracy value without a core. Previous analyses did not account for the formation's numerous lithologies and interbedded layers. The main aim of the present study is to select the suitable correlation to predict the UCS for hole depth of formation without separating the lithology. Furthermore, the second aim is to detect an adequate input parameter among set wireline to determine the UCS by using data of three wells along ten formations (Tanuma, Khasib, Mishrif, Rumaila, Ahmady, Maudud, Nahr Um
... Show MoreElectrochemical Grinding (ECG) process is a mechanically assisted electrochemical process for material processing. The process is able to successfully machine electrically conducting harder materials at faster rate with improved surface finish and dimensional control. This research studies the effect of applied current, electrolyte concentration, spindle speed and the gap between workpiece and tool on hardness and material removal rate during electrochemical grinding for stainless steel 316. The characteristic features of the electrochemical grinding process are explored through Taguchi-design-based experimental studies. The better hardness can be obtained at 10 A of the current, 150 g/l of the electrolyte concentration, 0.3 mm of gap an
... Show MoreThe inhibitive action of Reactive Red (RR31) dye against corrosion of carbon steel in 1M acetic acid solution has been studied using gravimetric method at temperature ranged (288-318)K. The antibacterial activity for the different concentrations of RR31 dye against different bacterial species was studied. The experimental data indicates that this dye acts as a potential inhibitor for carbon-steel in acetic acid medium and the protection efficiency increase with increasing (RR31) dye. The adsorption of (RR31) dye on the carbon steel surface was found to follow Langmuir adsorption isotherm. Thermodynamic data for the adsorption process such as Gibbs free energy change ∆Gads, enthalpy change ∆Hads, and entropy change ∆Sads were estima
... Show More