Using Scenarios to Assess Student Learning
...Show More Authors
In this study, a traumatic spinal cord injury (TSCI) classification system is proposed using a convolutional neural network (CNN) technique with automatically learned features from electromyography (EMG) signals for a non-human primate (NHP) model. A comparison between the proposed classification system and a classical classification method (k-nearest neighbors, kNN) is also presented. Developing such an NHP model with a suitable assessment tool (i.e., classifier) is a crucial step in detecting the effect of TSCI using EMG, which is expected to be essential in the evaluation of the efficacy of new TSCI treatments. Intramuscular EMG data were collected from an agonist/antagonist tail muscle pair for the pre- and post-spinal cord lesi
... Show MoreSome geological phenomena as landslides and the mobilization of the accumulated rocks or soil are discussed in this research by using projectiles that cause mobility and falling of these land masses which are present at the top of mountains and edges of roads and streets to avoid accidents and human disasters which will occur if they are left falling by effect of climate or vibrating factors that are produced by performing dams, bridges and reservoirs. According to the different divisions of land masses groups, primary and secondary, which depend on type of movement and material arrangement that form the mobile masses, this research had shown the effect of projectiles for every type of cannons on the mobility of every groups of these rocks
... Show MoreIdentify the effect of an educational design according to the repulsive (allosteric) learning model on the achievement of chemistry and lateral thinking. The sample consisted of (59) students from third-grade intermediate students. They were randomly distributed into two groups (experimental and control), and the equivalence was done in (chronological age, previous achievement in chemistry, intelligence, lateral thinking). The (30) students from experimental group were taught according to the instructional design, other 29 students from the (control) group were taught according to the usual method. Two tests done, one of them is an achievement test consisted of (30) items of the type of multiple choice, the other was a lateral think
... Show MoreEstimating an individual's age from a photograph of their face is critical in many applications, including intelligence and defense, border security and human-machine interaction, as well as soft biometric recognition. There has been recent progress in this discipline that focuses on the idea of deep learning. These solutions need the creation and training of deep neural networks for the sole purpose of resolving this issue. In addition, pre-trained deep neural networks are utilized in the research process for the purpose of facial recognition and fine-tuning for accurate outcomes. The purpose of this study was to offer a method for estimating human ages from the frontal view of the face in a manner that is as accurate as possible and takes
... Show MoreBackground: The efficacy of educational strategies is crucial for nursing students to competently perform pediatric procedures like nasogastric tube insertion. Specific Background: This study evaluates the effectiveness of simulation, blended, and self-directed learning strategies in enhancing these skills among nursing students. Knowledge Gap: Previous research lacks a comprehensive comparison of these strategies' impacts on skill development in pediatric nursing contexts. Aims: The study aims to assess the effectiveness of different educational strategies on nursing students' ability to perform pediatric nasogastric tube insertions. Methods: A pre-experimental design was employed at the College of Nursing, University of Baghdad, i
... Show MoreMonaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi
... Show More