Water contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show MoreActivated carbon was Produced from coconut shell and was used for removing sulfate from industrial waste water in batch Processes. The influence of various parameter were studied such as pH (4.5 – 9.) , agitation time (0 – 120)min and adsorbent dose (2 – 10) gm.
The Langmuir and frandlich adsorption capacity models were been investigated where showed there are fitting with langmmuir model with squre regression value ( 0.76). The percent of removal of sulfate (22% - 38%) at (PH=7) in the isotherm experiment increased with adsorbent mass increasing. The maximum removal value of sulfate at different pH experiments is (43%) at pH=7.
This work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThe potential application of granules of brick waste (GBW) as a low-cost sorbent for removal of Ni+2ions from aqueous solutions has been studied. The properties of GBW were determined through several tests such as X-Ray diffraction (XRD), Energy dispersive X-ray (EDX), Scanning electron microscopy (SEM), and BET surface area. In batch tests, the influence of several operating parameters including contact time, initial concentration, agitation speed, and the dose of GBW was investigated. The best values of these parameters that provided maximum removal efficiency of nickel (39.4%) were 1.5 hr, 50 mg/L, 250 rpm, and 1.8 g/100mL, respectively. The adsorption data obtained by batch experiments subjected to the Three i
... Show MoreThe removal of turbidity from produced water by chemical coagulation/flocculation method using locally available coagulants was investigated. Aluminum sulfate (alum) is selected as a primary coagulant, while calcium hydroxide (lime) is used as a coagulant aid. The performance of these coagulants was studied through jar test by comparing turbidity removal at different coagulant/ coagulants aid ratio, coagulant dose, water pH, and sedimentation time. In addition, an attempt has been made to examine the relationship between turbidity (NTU) and total suspended solids (mg/L) on the same samples of produced water. The best conditions for turbidity removal can be obtained at 75% alum+25% lime coagulant at coagulant dose of 80 m
... Show MoreThis work was conducted to study the ability of locally prepared Zeolite NaY for the reduction of sulfur compounds from Iraqi natural gas by a continuous mode adsorption unit. Zeolite Y was hydrothermally synthesized using abundant kaolin clay as aluminum precursor. Characterization was made using chemical analysis, XRD and BET surface area. Results of the adsorption experiments showed that zeolite Y is an active adsorbent for removal H2S from natural gas and other gas streams. The effect of temperature was found inversely related to the removal efficiency. Increasing bed height was found to increase the removal efficiency at constant flow rate of natural gas. The adsorption capacity was evaluated and its maximum uptake was 5.345 mg H2S/g z
... Show MoreThis paper presents studying the performance of three types of polyethersulfone (PES) membrane for the simultaneous removal of Co2+ ions, Cd2+ ions, and Pb2+ ions from binary and ternary aqueous solutions. Co2+ ions, Cd2+ ions, and Pb2+ ions with two different initial concentrations (e.g., 10 and 50 ppm) were selected as examples of heavy metals that contaminate the groundwater as a result of geological and human activities. This study investigated the effect of types of PES membrane and metal ions concentration on the separation process. For the binary aqueous solutions, the permeation flux of the PES2 membranes was higher for the separation process of solutions containing 50 ppm of Cd2+ ions and 10 ppm of Co2+ ions (24.7 L
... Show More
