Electromyogram (EMG)-based Pattern Recognition (PR) systems for upper-limb prosthesis control provide promising ways to enable an intuitive control of the prostheses with multiple degrees of freedom and fast reaction times. However, the lack of robustness of the PR systems may limit their usability. In this paper, a novel adaptive time windowing framework is proposed to enhance the performance of the PR systems by focusing on their windowing and classification steps. The proposed framework estimates the output probabilities of each class and outputs a movement only if a decision with a probability above a certain threshold is achieved. Otherwise (i.e., all probability values are below the threshold), the window size of the EMG signal increases. We demonstrate our framework utilizing EMG datasets collected from nine transradial amputees who performed nine movement classes with Time Domain Power Spectral Descriptors (TD-PSD), Wavelet and Time Domain (TD) feature extraction (FE) methods and a Linear Discriminant Analysis (LDA) classifier. Nonetheless, the concept can be applied to other types of features and classifiers. In addition, the proposed framework is validated with different movement and EMG channel combinations. The results indicate that the proposed framework works well with different FE methods and movement/channel combinations with classification error rates of approximately 13% with TD-PSD FE. Thus, we expect our proposed framework to be a straightforward, yet important, step towards the improvement of the control methods for upper-limb prostheses.
The rise of Industry 4.0 and smart manufacturing has highlighted the importance of utilizing intelligent manufacturing techniques, tools, and methods, including predictive maintenance. This feature allows for the early identification of potential issues with machinery, preventing them from reaching critical stages. This paper proposes an intelligent predictive maintenance system for industrial equipment monitoring. The system integrates Industrial IoT, MQTT messaging and machine learning algorithms. Vibration, current and temperature sensors collect real-time data from electrical motors which is analyzed using five ML models to detect anomalies and predict failures, enabling proactive maintenance. The MQTT protocol is used for efficient com
... Show MoreDue to the development that occurs in the technologies of information system many techniques was introduced and played important role in the connection between machines and peoples through internet, also it used to control and monitor of machines, these technologies called cloud computing and Internet of Things. With the replacement of computing resources with manufacturing resources cloud computing named converted into cloud manufacturing.
In this research cloud computing was used in the field of manufacturing to automate the process of selecting G-Code that Computer Numerical Control machine work it, this process was applied by the using of this machine with Radio Frequency Identification and a AWS Cloud services and some of py
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Deci
... Show MoreMany academics have concentrated on applying machine learning to retrieve information from databases to enable researchers to perform better. A difficult issue in prediction models is the selection of practical strategies that yield satisfactory forecast accuracy. Traditional software testing techniques have been extended to testing machine learning systems; however, they are insufficient for the latter because of the diversity of problems that machine learning systems create. Hence, the proposed methodologies were used to predict flight prices. A variety of artificial intelligence algorithms are used to attain the required, such as Bayesian modeling techniques such as Stochastic Gradient Descent (SGD), Adaptive boosting (ADA), Decision Tre
... Show MoreThis work presents a novel technique for the detection of oil aging in electrical transformers using a single mode optical fiber sensor based on surface plasmon resonance (SPR). The aging of insulating oil is a critical issue in the maintenance and performance of electrical transformers, as it can lead to reduce insulation properties, increase risk of electrical breakdown, and decrease operational lifespan. Many parameters are calculated in this study in order to examine the efficiency of this sensor like sensitivity (S), signal to noise ratio (SNR), resolution (refractive index unit) and figure of merit (FOM) and the values are for figure of merit is 11.05, the signal to noise ratio is 20.3, the sensitivity is 6.63, and the resolution is 3
... Show MoreIn this work, a fiber-optic biomedical sensor was manufactured to detect hemoglobin percentages in the blood. SPR-based coreless optical fibers were developed and implemented using single and multiple optical fibers. It was also used to calculate refractive indices and concentrations of hemoglobin in blood samples. An optical fiber, with a thickness of 40 nanometers, was deposited on gold metal for the sensing area to increase the sensitivity of the sensor. The optical fiber used in this work has a diameter of 125μm, no core, and is made up of a pure silica glass rod and an acrylate coating. The length of the fiber was 4cm removed buffer and the splicing process was done. It is found in practice that when the sensitive refractive i
... Show MoreToday in the digital realm, where images constitute the massive resource of the social media base but unfortunately suffer from two issues of size and transmission, compression is the ideal solution. Pixel base techniques are one of the modern spatially optimized modeling techniques of deterministic and probabilistic bases that imply mean, index, and residual. This paper introduces adaptive pixel-based coding techniques for the probabilistic part of a lossy scheme by incorporating the MMSA of the C321 base along with the utilization of the deterministic part losslessly. The tested results achieved higher size reduction performance compared to the traditional pixel-based techniques and the standard JPEG by about 40% and 50%,
... Show MoreAbstract
Magnetic abrasive finishing (MAF) is one of the advanced finishing processes, which produces a high level of surface quality and is primarily controlled by a magnetic field. This paper study the effect of the magnetic abrasive finishing system on the material removal rate (MRR) and surface roughness (Ra) in terms of magnetic abrasive finishing system for eight of input parameters, and three levels according to Taguchi array (L27) and using the regression model to analysis the output (results). These parameters are the (Poles geometry angle, Gap between the two magnetic poles, Grain size powder, Doze of the ferromagnetic abrasive powder, DC current, Workpiece velocity, Magnetic poles velocity, and Finishi
... Show More