This paper presents an experimental and numerical study which was carried out to examine the influence of the size and the layout of the web openings on the load carrying capacity and the serviceability of reinforced concrete deep beams. Five full-scale simply supported reinforced concrete deep beams with two large web openings created in shear regions were tested up to failure. The shear span to overall depth ratio was (1.1). Square openings were located symmetrically relative to the midspan section either at the midpoint or at the interior boundaries of the shear span. Two different side dimensions for the square openings were considered, mainly, (200) mm and (230) mm. The strength results proved that the shear capacity of the deep beam is governed by the size and location of web openings. The experimental results indicated that the reduction of the shear capacity may reach (66%). ABAQUS finite element software program was used for simulation and analysis. Numerical analyses provided un-conservative estimates for deep beam load carrying capacity in the range between (5-21%). However, the maximum scatter of the finite element method predictions for first diagonal and first flexural cracking loads was not exceeding (17%). Also, at service load the numerical of midspan deflection was greater than the experimental values by (9-18%).
Background: The daily cleaning routine of the silicone maxillofacial prostheses by the patient may cause some alteration in the materials properties. The purpose of the present study was to investigate the effect of different disinfection procedures on some properties of silicon dioxide reinforced Cosmesil M511 HTV maxillofacial silicone. Materials and Methods: One hundred and sixty (160) specimens were prepared by mixing 5% SiO2 nano particles and 0.5% intrinsic cream color into the silicone polymer according to manufacturer's instructions. Specimens were divided into 4 groups according to the performed test (tear strength, surface hardness, surface roughness and color) with 40 specimens each. Each group was further subdivided according to
... Show MoreSome structures such as tall buildings, offshore platforms, and bridge bents are subjected to lateral loads of considerable magnitude due to wind and wave actions, ship impacts, or high-speed vehicles. Significant torsional forces can be transferred to the foundation piles by virtue of eccentric lateral loading. The testing program of this study includes one group consists of 3 piles, four percentages of allowable vertical load were used (0%, 25%, 50%, and 100%) with two L/D ratios 20 and 30, vertical allowable load 110 N for L/D = 20 and 156 N for L/D = 30. The results obtained indicate that the torsional capacity for pile group increases with increasing the percentage of allowable vertical load, when the percentage of allowable vertica
... Show MoreThe design of reinforced concrete spread foundations mainly depends on soil bearing capacity, loading value, and column size. So for each design case, tiresome calculations and time consumption are needed. In this paper, generalized design charts are presented and plotted according to derivations based on the ACI 318 M-2019 Code. These charts could be used directly by the structural designers to estimate the column size, foundation thickness, and dimensions as well as the foundation reinforcement under a certain given concentric load assuming a uniformly distributed contact pressure underneath the foundation. Of noteworthy, these charts are oriented to deal with square isolated footings with a square concentric column, covering reasonable r
... Show MoreThe aim of this article is to study the dynamical behavior of an eco-epidemiological model. A prey-predator model comprising infectious disease in prey species and stage structure in predator species is suggested and studied. Presumed that the prey species growing logistically in the absence of predator and the ferocity process happened by Lotka-Volterra functional response. The existence, uniqueness, and boundedness of the solution of the model are investigated. The stability constraints of all equilibrium points are determined. The constraints of persistence of the model are established. The local bifurcation near every equilibrium point is analyzed. The global dynamics of the model are investigated numerically and confronted with the obt
... Show MoreThe maximization of the net present value of the investment in oil field improvements is greatly aided by the optimization of well location, which plays a significant role in the production of oil. However, using of optimization methods in well placement developments is exceedingly difficult since the well placement optimization scenario involves a large number of choice variables, objective functions, and restrictions. In addition, a wide variety of computational approaches, both traditional and unconventional, have been applied in order to maximize the efficiency of well installation operations. This research demonstrates how optimization approaches used in well placement have progressed since the last time they were examined. Fol
... Show MoreDust samples have been collected from three areas in Baghdad during dust storm occurred in 18th of June 2009 to characterize elemental particle size and composition by different techniques. The x-ray diffraction detected six minerals those are calcite, and quartz, present as a major components, dolomite, kaolinite, gypsum and plagioclase present as miner components .EDX detected some normal elements presented in local soil except traces of lead , nickel, and chromium. The particle size analysis by a set of sieves have revealed that the majority particle distribution was between (32 and 45)μm . To isolate the aerosol size, PM10 buoyancy method of powder in water showed a signifying amounts of particulate size .Scheerer’s method was app
... Show MoreConcrete structures is affected by a deleterious reaction, which is known as Alkali Aggregate Reaction (AAR). AAR can be defined as a chemical reaction between the alkali content in the pore water solution of the cement paste and reactive forms of silica hold in the aggregate. This internal reaction produces expansion and cracking in concrete, which can lead to loss of strength and stiffness. Carbon fiber-reinforced polymer (CFRP) is one of the methods used to suppress further AAR expansion and rehabilitate and support damaged concrete structures. In this research, thirty-six cylindrical specimens were fabricated from non-reactive and reactive concrete, which contained fused silica as