Preferred Language
Articles
/
shjBUpUBVTCNdQwCICvp
Experimental and numerical investigation on the behavior of composite reinforced concrete columns encased by steel section and hybrid GFRP section
...Show More Authors

GFRP was employed in constructions as an alternative to steel, which has many advantages like lightweight, large tensile strength and resist corrosion. Existing researches are insufficient in studying the influence of hybrid reinforced concrete composite columns encased by GFRP I-section (RCCCEG) and I-section steel (RCCCES). In this study twenty one (RC) specimens of a cross-section of 130 mm × 160 mm, with different length (long 1600 mm and short 750 mm) were encased by using I-section (steel and GFRP) and tested under various loading (concentric, eccentric and flexural loads). The test was focused on the influence of many parameters; load-carrying capacity, mode of failure, deformation and drawing an interaction diagram (N-M) for columns. The research explores the feasibility and effectiveness of the employing GFRP and steel sections. The test results concluded that all the composite columns with I-section steel presented similar failure modes to I-section GFRP composite column. Increasing in strength and ductility in short and slender reinforced concrete composite columns related to reinforced concrete columns. The eccentric load has a significant reduction in column strength, especially in slender column. The 3D FE models of (RCCC) were established by ABAQUS. (RCCC) was studied in terms of failure mode, deformation and bearing capacity also an analytical study was employed to obtain analytical results for short specimens subjected to flexural load and employing these outcomes for drawing interaction diagram (N-M) for short columns. Based on the verification of FE analysis, the experimental and theoretical results showed a good agreement.

Scopus Clarivate Crossref
View Publication
Publication Date
Thu May 31 2012
Journal Name
Al-khwarizmi Engineering Journal
Experimental and Numerical Study of Crack Effect on Frequency of Simple Supported Beam
...Show More Authors

In this research the natural frequency of a cracked simple supported beam (the crack is in many places and in different depths) is investigated analytically, experimentally and numerically by ANSYS program, and the results are compared. The beam is made of iron with dimensions of L*W*H= (0.84*0.02* 0.02m), and density = 7680kg/m3, E=200Gpa. A comparison made between analytical results from ANSYS with experimental results, where the biggest error percentage is about (7.2 %) in crack position (42 cm) and (6 mm) depth. Between Rayleigh method with experimental results the biggest error percentage is about (6.4 %) for the same crack position and depth. From the error percentages it could be concluded that the Rayleigh method gives

... Show More
View Publication Preview PDF
Publication Date
Thu Sep 01 2022
Journal Name
Neuroquantology
Reaction Cross Section Variations of (alpha + 22Ne) in Msun<M<4Msun AGB Stars
...Show More Authors

Listed

Publication Date
Mon Mar 11 2019
Journal Name
Baghdad Science Journal
Experimental and Quantum Chemical Studies on the Corrosion Inhibition of Mild Steel By 2-((Thiophen-2-Ylmethylene) Amino)Benzenethio in 1M HCl
...Show More Authors

The impact of a Schiff base namely 2-((thiophen-2-ylmethylene)amino)benzenethiol  to corrode mild steel in 1 M HCl  resolved was evaluated using different weight loss technique and scanning electron microscopy (SEM).different weight measurements to expand that the 2-((thiophen-2-ylmethylene) amino) benzenethiol  inhibits  the corrosion of mild steel through adsorbing  of  top for mild steel and block the active locality. The inhibitive impacts of 2-((thiophen-2-ylmethylene)amino)benzenethiol  increase with increasing concentration and decrease with increasing temperature. SEM to checking revealed that the alloy surface was quite unaffected and formed protective film on its surface. The investigated

... Show More
View Publication Preview PDF
Scopus (4)
Crossref (1)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Al-khwarizmi Engineering Journal
Effect of Laser Shock Peening on the Fatigue Behavior and Mechanical Properties of Composite Materials
...Show More Authors

In this study, Laser Shock Peening (LSP) effect on the polymeric composite materials has been investigated experimentally. Polymeric composite materials are widely used because they are easy to fabricate and have many attractive features. Unsaturated polyester resin as a matrix was selected and Aluminum powder with micro particles as a reinforcement material was used with different volume fraction (2.5%, 5% and 7.5%). Hand lay-up process was used for preparation the composites. Fatigue test with constant amplitude with stress ratio (R =-1) was carried out before and after LSP process with two levels of energy (1Joule and 2Joule). The result showed an increase in the endurance strength of 25.448% at 7.5% volume fraction when peened is 1J

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
Effect of Fire Flame (High Temperature) on the Behaviour of Axially loaded Reinforced SCC Short Columns
...Show More Authors

Experimental research was carried out to investigate the effect of fire flame (high temperature) on specimens of short columns manufactured using SCC (Self compacted concrete). To simulate the real practical fire disasters, the specimens were exposed to high
temperature flame, using furnace manufactured for this purpose. The column specimens were cooled in two ways. In the first the specimens were left in the air and suddenly cooled using water, after that the specimens were loaded to study the effect of degree of
temperature, steel reinforcement ratio and cooling rate, on the load carrying capacity of the reinforced concrete column specimens. The results will be compared with behaviour of columns without burning (control specime

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Civil Engineering Journal
Structural Behavior of High Strength Laced Reinforced Concrete One Way Slab Exposed to Fire Flame
...Show More Authors

In this study, an experimental investigation had conducted for six high strength laced reinforced concrete one-way slabs to discover the behavior of laced structural members after being exposed to fire flame (high temperature). Self-compacted concrete (SCC) had used to achieve easy casting and high strength concrete. All the adopted specimens were identical in their compressive strength of ( , geometric layout 2000 750 150 mm and reinforcement specifics except those of lacing steel content, three ratios of laced steel reinforcement of (0.0021, 0.0040 and 0.0060) were adopted. Three specimens were fired with a steady state temperature of  for two hours duration and then after the specimens were cooled suddenly by spraying water. The

... Show More
View Publication
Crossref (4)
Crossref
Publication Date
Thu May 24 2018
Journal Name
Aip Conference Proceedings
The study effect of weight fraction on thermal and electrical conductivity for unsaturated polyester composite alone and hybrid
...Show More Authors

In this research prepared two composite materials , the first prepared from unsaturated polyester resin (UP) , which is a matrix , and aluminum oxide (Al2O3) , and the second prepared from unsaturated polyester resin and aluminum oxide and copper oxide (CuO) , the two composites materials (Alone and Hybrid) of percentage weight (5,10,15)% . All samples were prepared by hand layup process, and study the electrical and thermal conductivity. The results showed decrease electrical conductivity from (10 - 2.39) ×10-15 for (Up+ Al2O3) and from (10 - 2.06)×10-15 for (Up+ Al2O3+ CuO) .But increase thermal conductivity from( 0.17 - 0.505) for (Up+ Al2O3) and from (0.17 - 0.489) for (Up+ Al2O3+ CuO).

View Publication
Scopus (19)
Crossref (16)
Scopus Clarivate Crossref
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EXPERIMENTAL OBSERVATIONS ON THE BEHAVIOR OF A PILED RAFT FOUNDATION
...Show More Authors

The piled raft is a geotechnical composite construction consisting of three elements: piles, raft and soil.
In the design of piled rafts, the load shared between the piles and the raft, and the piles are used up to a
load level that can be of the same order of magnitude as the bearing capacity of a comparable single
pile or even greater. Therefore, the piled raft foundation allows reduction of settlements in a very
economic way as compared to traditional foundation concepts.
This paper presents experimental study to investigate the behavior of piled raft system in sandy
soil. A small scale “prototype” model was tested in a sand box with load applied to the system through
a compression machine. The settlement was

... Show More
View Publication Preview PDF
Crossref (6)
Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
EXPERIMENTAL AND NUMERICAL STRESS ANALYSIS OF INVOLUTE SPLINED SHAFT
...Show More Authors

In this study, the induced splined shaft teeth contact and bending stresses have been investigated numerically using finite element method(Ansys package version 11.0) with changing the most effecting design parameter,(pressure angle, teeth number, fillet radius and normal module), for internal and external splined shaft. Experimental work has been achieved using two dimensional photoelastic techniques to get the contact and bending stresses; the used material is Bakelite sheet type “PSM-4”.
The results of numerical stress analysis indicate that, the increasing of the pressure angle and fillet radius decrease the bending stress and increase the contact stress for both internal and external spline shaft teeth while the increasing of

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Fri Sep 01 2017
Journal Name
Journal Of Bridge Engineering
Novel Demountable Shear Connector for Accelerated Disassembly, Repair, or Replacement of Precast Steel-Concrete Composite Bridges
...Show More Authors

A novel demountable shear connector for precast steel-concrete composite bridges is presented. The connector uses high-strength steel bolts, which are fastened to the top flange of the steel beam with the aid of a special locking nut configuration that prevents bolts from slipping within their holes. Moreover, the connector promotes accelerated construction and overcomes the typical construction tolerance issues of precast structures. Most importantly, the connector allows bridge disassembly. Therefore, it can address different bridge deterioration scenarios with minimum disturbance to traffic flow including the following: (1) precast deck panels can be rapidly uplifted and replaced; (2) connectors can be rapidly removed and replaced; and (

... Show More
View Publication Preview PDF
Scopus (92)
Crossref (80)
Scopus Clarivate Crossref