Background: Strangles is a highly contagious equine respiratory disease caused by Streptococcus equi subsp. equi. It is a globally significant pathogen and one of the most common infectious agents in horses. In Iraq, no sequencing data on this pathogen are available, and only two molecular studies have been published to date. This study provides preliminary insights into strain diversity and provides a foundation for future large-scale investigations. Aim: This study aimed to investigate the molecular characteristics, identify SeM gene alleles, and perform a phylogenetic analysis of S. equi isolates from horses in Baghdad, Iraq. Methods: We analyzed 59 Streptococcus spp. isolates previously obtained from equine clinical samples. Conventional PCR targeting the SeM gene was used to identify S. equi. Additionally, nine PCR-positive SeM gene products were sequenced, followed by phylogenetic analysis and allele identification. Results: We confirmed 49 isolates as S. equi from the 59 isolates according to the molecular assay. Additionally, nine PCR products were used for sequencing and allele typing of the SeM gene which provided the initial report of SeM-97 allele identification in Iraq. Phylogenetic analysis along with SeM gene typing revealed a close relationship between the Iraqi strains and one Iranian strain with 100% sequence identity, revealing important epidemiological relationships that may indicate regional ties to the strain detected in Iran. Conclusion: The present study represents the first investigation of SeM allele typing in Iraq, identifying the SeM-97 allele of S. equi along with its unique amino acid variations. The findings highlight genetic similarities between Iraqi isolates and a strain from Iran, suggesting the potential regional dissemination of S. equi.
Expanded use of antibiotics may increase the ability of pathogenic bacteria to develop antimicrobial resistance. Greater attention must be paid to applying more sustainable techniques for treating wastewater contaminated with antibiotics. Semiconductor photocatalytic processes have proven to be the most effective methods for the degradation of antibiotics. Thus, constructing durable and highly active photocatalytic hybrid materials for the photodegradation of antibiotic pollutants is challenging. Herein, FeTiO3/Fe-doped g-C3N4 (FTO/FCN) heterojunctions were designed with different FTO to FCN ratios by matching the energy level of semiconductors, thereby developing effective direct Z-type heterojunctions. The photodegradation behaviors of th
... Show MoreBackground: Cystinosis is a rare autosomal recessive lysosomal storage disease with high morbidity and mortality. It is caused by mutations in the CTNS gene that encodes the cystine transporter, cystinosin, which leads to lysosomal cystine accumulation. It is the major cause of inherited Fanconi syndrome, and should be suspected in young children with failure to thrive and signs of renal proximal tubular damage. The diagnosis can be missed in infants, because not all signs of renal Fanconi syndrome are present during the first months of life. Elevated white blood cell cystine content is the cornerstone of the diagnosis. Since chitotriosidase (CHIT1 or chitinase-1) is mainly produced by activated macrophages both in normal and inflammator
... Show MoreAt a temperature of 300 K, a prepared thin film of Ag doped with different ratios of CdO (0.1, 0.3, 0.5) % were observed using pulse laser deposition (PLD). The laser, an Nd:YAG in ?=1064 nm, used a pulse, constant energy of 600 mJ ,with a repetition rate of 6 Hz and 400 pulses. The effect of CdO on the structural and optical properties of these films was studied. The structural tests showed that these films are of a polycrystalline structure with a preferred orientation in the (002) direction for Ag. The grain size is positively correlated with the concentration of CdO. The optical properties of the Ag :CdO thin film we observed included transmittance, absorption coefficient, and the energy gap in the wavelength range of 300-1100
... Show MoreThe present study utilised date palm fibre (DPF) waste residues to adsorb Congo red (CR) dye from aqueous solutions. The features of the adsorbent, such as its surface shape, pore size, and chemical properties, were assessed with X-ray diffraction (XRD), BET, Fourier-transform infrared (FTIR), X-ray fluorescence (XRF), and field emission scanning electron microscope (FESEM). The current study employed the batch system to investigate the ideal pH to adsorb the CR dye and found that acidic pH decolourised the dye best. Extending the dye-DPF waste mixing period at 25°C reportedly removed more dye. Consequently, the influence of the starting dye and DPF waste quantity on dye removal was explored in this study. At 5 g/L dye concentration, 48% d
... Show MoreThe modified Hummers method was applied to prepare graphene oxide (GO) from the graphite powder. Tin oxide nanoparticles with different loading (10-20 wt.%) supported on reduced graphene oxide were synthesized to evaluate the oxidative desulfurization efficiency. The catalyst was synthesized by the incipient wetness impregnation (IWI) technique. Different analysis methods like FT-IR, XRD, FESEM, AFM, and Brunauer-Emmett-Teller (BET) were utilized to characterize graphene oxide and catalysts. The XRD analysis showed that the average crystal size of graphene oxide was 6.05 nm. In addition, the FESEM results showed high metal oxide dispersions on the rGO. The EDX analysis shows the weight ratio of Sn is close to its theoretical weight.
... Show MoreCoronavirus disease (COVID-19) is a global pandemic caused by the severe acute respiratory syndrome coronavirus, SARS-CoV-2. Infection with SARS-CoV-2 primarily occurs through binding to angiotensin-converting enzyme-2 (ACE2), which is abundantly expressed in various anatomical sites, including the nasopharynx, lungs, cardiovascular system, and gastrointestinal and genitourinary tracts. This study aimed to nurses' knowledge and protective health behaviors about prevention of covid-19 pandemic complications.
A descriptive design stud
Introduction and Aim: Cancers are a complex group of genetic illnesses that develop through multistep, mutagenic processes which can invade or spread throughout the body. Recent advances in cancer treatment involve oncolytic viruses to infect and destroy cancer cells. The Newcastle disease virus (NDV), an oncolytic virus has shown to have anti-cancer effects either directly by lysing cancer cells or indirectly by activating the immune system. The green fluorescent protein (GFP) has been widely used in studying the anti-tumor activity of oncolytic viruses. This study aimed to study the anticancer effect of a recombinant rNDV-GFP clone on NCI-H727 lung carcinoma cell line in vitro. Materials and Methods: The GFP gene was inserted t
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show MoreThe integration of nanomaterials in asphalt modification has emerged as a promising approach to enhance the performance of asphalt pavements, particularly under high-temperature conditions. Nanomaterials, due to their unique properties such as high surface area, exceptional mechanical strength, and thermal stability, offer significant improvements in the rheological properties, durability, and resistance to deformation of asphalt binders. This research reviewed the application of various nanomaterials, including nano silica, nano alumina, nano titanium, nano zinc, and carbon nanotubes in asphalt modification. The incorporation of these nanomaterials into asphalt mixtures has shown potential to increase the stiffness and high-tempera
... Show More