Preferred Language
Articles
/
shgEeZQBVTCNdQwC0RmM
Segmentation Moon Images Using Different Segmentation Methods and Isolate the Lunar Craters
...Show More Authors

Segmentation is the process of partition digital images into different parts depending on texture, color, or intensity, and can be used in different fields in order to segment and isolate the area to be partitioned. In this work images of the Moon obtained through observations in Astronomy and space dep. College of science university of Baghdad by ( Toward space telescopes and widespread used of a CCD camera) . Different segmentation methods were used to segment lunar craters. Different celestial objects cause craters when they crash into the surface of the Moon like asteroids and meteorites. Thousands of craters appears on the Moon's surface with ranges in size from meter to many kilometers, it provide insights into the age and geology of a Moon's surface. Therefore, it is important to study them and determine their characteristics. So, several segmentations methods were used in this study these are: K-Means, Single Feed Forward Neural Network (SFFNN), and hybrid segmentation methods. K-Means method applied with different number of clusters (k), that were used to segment Moon images and isolate lunar craters, where k=1,2,3, and 4 were used. But, all of them did not identify the boundary of craters, only K=3 gave useful results. SFFNN was also used in this work, it trained by a novel method, where weights have been replaced by masks, that create depending on the images features and targets. Thirteen lunar craters were used, ten of them utilized in training process and the last three images were used to test the performance of network. But also this method did not segment lunar images and identify the boundaries of lunar craters clearly. So, in attempt to overcome this problem, the new hybrid method was proposed, that combine the concepts of K Means and SFFNN methods. The main advantages of the proposed hybrid method is that it does not require much data in the training process as it is known in other networks, where the K-Means cluster segmentation method gave a shortcut to correlating masks with images, which led to giving perfect results in a short time. Then, results show the proposed hybrid segmentation method was succeed to segment lunar crater and identify the craters boundaries clearly.

Scopus Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Indian Journal Of Public Health Research & Development
Anterior Loop Presence and Extension Using Cone-Beam Computed Tomography
...Show More Authors

View Publication
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Sat Oct 09 2021
Journal Name
Applied System Innovation
Design and Optimization of Vertical Axis Wind Turbines Using QBlade
...Show More Authors

Wind energy is considered one of the most important sources of renewable energy in the world, because it contributes to reducing the negative effects on the environment. The most important types of wind turbines are horizontal and vertical axis wind turbines. This work presents the full details of design for vertical axis wind turbine (VAWT) and how to find the optimal values of necessary factors. Additionally, the results shed light on the efficiency and performance of the VAWT under different working conditions. It was taken into consideration the variety of surrounding environmental conditions (such as density and viscosity of fluid, number of elements of the blade, etc.) to simulate the working of vertical wind turbines under di

... Show More
Scopus (19)
Crossref (20)
Scopus Clarivate Crossref
Publication Date
Fri Jan 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Stamps extraction using local adaptive k- means and ISODATA algorithms
...Show More Authors

<span>One of the main difficulties facing the certified documents documentary archiving system is checking the stamps system, but, that stamps may be contains complex background and surrounded by unwanted data. Therefore, the main objective of this paper is to isolate background and to remove noise that may be surrounded stamp. Our proposed method comprises of four phases, firstly, we apply k-means algorithm for clustering stamp image into a number of clusters and merged them using ISODATA algorithm. Secondly, we compute mean and standard deviation for each remaining cluster to isolate background cluster from stamp cluster. Thirdly, a region growing algorithm is applied to segment the image and then choosing the connected regi

... Show More
View Publication
Scopus (13)
Crossref (5)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
Sensors And Actuators A: Physical
Enhanced energy harvesting using multiple piezoelectric elements: Theory and experiments
...Show More Authors

View Publication
Scopus (61)
Crossref (54)
Scopus Clarivate Crossref
Publication Date
Thu Dec 15 2016
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Building Words Dictionary List Using Symbol Enumeration and Hashing Methodology
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Mon Oct 10 2016
Journal Name
Iraqi Journal Of Science
Satellite image classification using KL-transformation and modified vector quantization
...Show More Authors

In this work, satellite images classification for Al Chabaish marshes and the area surrounding district in (Dhi Qar) province for years 1990,2000 and 2015 using two software programming (MATLAB 7.11 and ERDAS imagine 2014) is presented. Proposed supervised classification method (Modified Vector Quantization) using MATLAB software and supervised classification method (Maximum likelihood Classifier) using ERDAS imagine have been used, in order to get most accurate results and compare these methods. The changes that taken place in year 2000 comparing with 1990 and in year 2015 comparing with 2000 are calculated. The results from classification indicated that water and vegetation are decreased, while barren land, alluvial soil and shallow water

... Show More
Publication Date
Tue Dec 17 2019
Journal Name
Lecture Notes In Electrical Engineering
Aspect Categorization Using Domain-Trained Word Embedding and Topic Modelling
...Show More Authors

Aspect-based sentiment analysis is the most important research topic conducted to extract and categorize aspect-terms from online reviews. Recent efforts have shown that topic modelling is vigorously used for this task. In this paper, we integrated word embedding into collapsed Gibbs sampling in Latent Dirichlet Allocation (LDA). Specifically, the conditional distribution in the topic model is improved using the word embedding model that was trained against (customer review) training dataset. Semantic similarity (cosine measure) was leveraged to distribute the aspect-terms to their related aspect-category cognitively. The experiment was conducted to extract and categorize the aspect terms from SemEval 2014 dataset.

View Publication Preview PDF
Scopus (5)
Crossref (3)
Scopus Crossref
Publication Date
Tue Jul 01 2014
Journal Name
International Journal Of Artificial Intelligence And Mechatronics
Machining Polylines and Ellipses using Three-Axis CNC Milling Machine
...Show More Authors

CNC machine is used to machine complex or simple shapes at higher speed with maximum accuracy and minimum error. In this paper a previously designed CNC control system is used to machine ellipses and polylines. The sample needs to be machined is drawn by using one of the drawing software like AUTOCAD® or 3D MAX and is saved in a well-known file format (DXF) then that file is fed to the CNC machine controller by the CNC operator then that part will be machined by the CNC machine. The CNC controller using developed algorithms that reads the DXF file feeds to the machine, extracts the shapes from the file and generates commands to move the CNC machine axes so that these shapes can be machined.

View Publication Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Lecture Notes In Networks And Systems
Using Artificial Intelligence and Metaverse Techniques to Reduce Earning Management
...Show More Authors

This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d

... Show More
View Publication
Scopus (1)
Crossref (6)
Scopus Crossref
Publication Date
Tue Dec 01 2015
Journal Name
Journal Of Engineering
Modeling and Control of Fuel Cell Using Artificial Neural Networks
...Show More Authors

This paper includes an experimental study of hydrogen mass flow rate and inlet hydrogen pressure effect on the fuel cell performance. Depending on the experimental results, a model of fuel cell based on artificial neural networks is proposed. A back propagation learning rule with the log-sigmoid activation function is adopted to construct neural networks model. Experimental data resulting from 36 fuel cell tests are used as a learning data. The hydrogen mass flow rate, applied load and inlet hydrogen pressure are inputs to fuel cell model, while the current and voltage are outputs. Proposed model could successfully predict the fuel cell performance in good agreement with actual data. This work is extended to developed fuel cell feedback

... Show More
View Publication Preview PDF