During the last two decades, nanomaterial application has gained a significant attraction into asphalt technology due to their effect in enhancing asphalt binder improving the asphaltic mixture. This study will modify the asphalt binder with two different nano types, nano SiO2 and CaCO3, at levels ranging from 1% to 7%. The resulting optimum nano-modified Asphalt will be subject to a series of rheological tests, including dynamic shear rheometer (DSR), Viscosity, and bending beam rheometer (BBR) to determine asphalt binder sensitivity towards low-medium-high temperature range. Results indicate that both nano types improved the physical characteristics of Asphalt, and 5% by weight of Asphalt was suggested as a reasonable dosage of nano-SiO2 and nano-CaCO3 based on the overall desirability analysis of physical tests. The viscosity and temperature sensitivity of bitumen were improved by adding nano SiO2 and CaCO3. On the other hand, the asphalt rutting resistance's capabilities were improved at higher temperatures. In contrast, it decreases resistance against fatigue at intermediate temperatures due to the lowest phase angles and higher loss moduli. The BBR test, however, reveals a modest decrease in bituminous anti-cracking.
The current research aims to identify the level of both psychological comfort and job performance among a sample of high school teachers for the academic year (2019-2020). The researcher has built two tools to measure psychological comfort, and one to measure job performance. The researcher applied the two scales to a random stratified sample of (100) male and female teachers. The results showed a low level of feeling with psychological comfort among secondary school teachers and a good level of sense of job performance. There is no statistically significant difference in the level of psychological comfort according to gender. There is a significant difference in psychological comfort according to the variable of the length of service in
... Show MoreThis paper introduces experimental results of eighteen simply supported reinforced concrete beams of cross sections ( ) and length 3000 mm to study the effect of lacing reinforcement on the performance of such beams under static and fatigue loads. Twelve reinforced concrete beams (two of them are casted with vertical shear reinforcement used as control beams) are tested under four points bending loading with displacement control technique and six laced reinforced concrete beams were exposed to high frequency (10 Hz) by fixing the fatigue load in each cycle. Three parameters are used in the designed beams, which are: lacing bar diameter (4mm, 6mm, and 8mm), lacing bar inclination angle to horizontal , and lacing steel rat
... Show MoreThermal performance of closed wet cooling tower has been investigated experimentally and theoretically
in this work. The theoretical model based on heat and mass transfer equations and heat and mass transfer balance equations which are established for steady state case. A new small indirect cooling tower was used for conducting experiments. The cooling capacity of cooling tower is 1 kW for an inlet water temperature of 38oC, a water mass velocity 2.3 kg/m2.s and an air wet bulb temperature of 26oC. This study investigates the relationship between saturation efficiency, cooling capacity and coefficient of performance of closed wet cooling tower versus different operating parameters such wet-bulb temperature, variable air-spray water fl
The main objective of this research is to find out the effect of deviation in the aggregate gradients of asphalt mixtures from the Job Mix Formula (JMF) on the general mixture performance. Three road layers were worked on (wearing layer, binder layer, and base layer) and statistical analysis was performed for the data of completed projects in Baghdad city, and the sieve that carried the largest number of deviations for each layer was identified. No.8 sieve (2.36mm), No.50 sieve (0.3mm), and 3/8'' sieve (9.5mm) had the largest number of deviations in the wearing layer, the binder layer, and the base layer respectively. After that, a mixture called Mix 1, was made. This mixture was selected from a number of completed mixtures, and it
... Show MorePermanent deformation in asphalt concrete pavements is pervasive distress [1], influenced by various factors such as environmental conditions, traffic loading, and mixture properties. A meticulous investigation into these factors has been conducted, yielding a robust dataset from uniaxial repeated load tests on 108 asphalt concrete samples. Each sample underwent systematic evaluation under varied test temperatures, loading conditions, and mixture properties, ensuring the data’s comprehensiveness and reliability. The materials used, sourced locally, were selected to enhance the study ʼs relevance to pavement constructions in hot climate areas, considering different asphalt cement grades and con- tents to understand material variability ef
... Show MoreOne of the most essential components of asphalt pavements is the filler. It serves two purposes. First, this fine-grained material (diameter less than 0.075 mm) improves the cohesiveness of aggregate with bitumen. Second, produce a dense mixture by filling the voids between the particles. Aluminum dross (AD), which is a by-product of aluminum re-melting, is formed all over the world. This material causes damage to humans and the environment; stockpiling AD in landfills is not the best solution. This research studies the possibility of replacing part of the conventional filler with aluminum dross. Three percent of dross was used, 10, 20, and 30% by filler weight. The MarshallMix design method was adopted to obtain the op
... Show MoreThis paper focused on the stone matrix asphalt (SMA) technology that was developed essentially to guard against rutting distress. For this procedure, fibers play a racy role in stabilizing and preventing the drain down problem caused by the necessity of high binder content coupled with their strengthening effect. A set of specimens with cylindrical and slab shapes were fabricated by inclusions jute, polyester, and carbon fibers. For each type, three contents of 0.25%, 0.5%, and 0.75% by weight of mixture were added by lengths of 5, 7.5, and 10 mm. The prepared mixtures were tested to gain the essential pertained parameters discriminated by the values of drain down, Marshall quotient, rut depth, and dynamic stability. It
... Show MoreWastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs
... Show MoreA detailed study of adsorption from solution of amitriptyline-HCl, chlorpromazine-HCl and
chlordiazepoxide-HCl on bentonite clay surface has been performed at variable conditions of
temperature, pH and ionic strength. It is aimed in this work to explore the capability of this clay in
treatment of poisoning by the mentioned drugs if taken in quantities higher than the usual doses.
Quantities of drugs adsorbed have been determined by UV spectrophotometric technique. The
sequence of adsorption in neutral media at 37.5 CÙ’ followed the order:
Amitriptyline-HCl > chlorpromazine-HCl > chlordiazepoxide-HCl.
The results were discussed in the light of Langmuir and Freundich adsorption isotherms. The usual
basic th