Staphylococcus aureus is a common pathogenic agent due to its ability to cause various types of infections, ranging from mild skin infections to sever systemic diseases. One of the most virulence factors of this bacterium is its ability to from biofilms on solid surfaces by anchoring the planktonic cells and by producing a protective layer of extra polymeric substances. Biofilm formation is controlled through many genes. The most important ones are icaA and icaD. Dentures are prosthetic devices that are made of different materials to replace lost teeth. The aim of this study is to examine the ability of different types of denture materials to support the biofilm formation of S. aureus at phenotypic level by detecting bacterial growth on them using crystal violet and scanning electron microscope, as well as genotypic level through detection and estimation of gene icaA and icaD expression. Our findings showed that the denture materials do support biofilm formation and there is elevation in gene expression of icaA and icaD.
The world's population growth and the increasing demand for new infrastructure facilities and buildings , present us with the vision of a higher resources consumption, specially in the form of more durable concrete such as High Performance Concrete (HPC) . Moreover , the growth of the world pollution by plastic waste has been tremendous. The aim of this research is to investigate the change in mechanical properties of HPC with added waste plastics in concrete. For this purpose 2.5%, 5% and 7.5% in volume of natural fine aggregate in the HPC mixes were replaced by an equal volume of Polyethylene Terephthalate (PET) waste , got by shredded PET bottles. The mechanical propert
... Show MoreAcrylic polymer/cement nanocomposites in dark and light colors have been developed for coating floors and swimming pools. This work aims to emphasize the effect of cement filling on the mechanical parameters, thermal stability, and wettability of acrylic polymer. The preparation was carried out using the casting method from acrylic polymer coating solution, which was added to cement nanoparticles (65 nm) with weight concentrations of (0, 1, 2, 4, and 8 wt%) to achieve high-quality specifications and good adhesion. Maximum impact strength and Hardness shore A were observed at cement ratios of 2 wt% and 4 wt%, respectively. Changing the filling ratio has a significant effect on the strain of the nanocomposites. The contact angle was i
... Show MoreNeonatal sepsis refers to the bacterial bloodstream infections of the newborn during the neonatal period as usually the first twenty-eight days of life. The current study was done in the laboratories of AL-Batool Teaching Hospital for Gynecology and Pediatrics in Baqubah, Diyala Governorate, including 140 blood specimens collected from the neonates admitted to the hospital with suspected sepsis, the ages of the both groups was ranged from 1 day to 28 days. Out of the total cultured samples, 32.14% (45 of 140) were positive and 67.86% (95 of 140) were negative blood culture. 45 of 140 samples were negative to the blood culture chosen as control group. The results showed highest isolates were Coagulase Negative Staphylococcus (CoNS) 19 (42.2%
... Show MoreShort Multi-Walled Carbon Nanotubes functionalized with OH group (MWCNTs-OH) were used to synthesize flexible MWCNTs networks. The MWCNTs suspension was synthesized using Benzoquinone (BQ) and N, N Dimethylformamide alcohol (DMF) in specific values and then deposited on filter paper by filtration from suspension (FFS) method. Polypyrrole (PPy) conductive polymer doped with metallic nanoparticles (MNPs) prepared using in-situ chemical polymerization method. To improve the properties of the MWCNTs networks, a coating layer of (PPy) conductive polymer, PPy:Ag nanoparticles, and PPy: Cu nanoparticles were applied to the network. The fabricated networks were characterized using an X-ray diffractometer (XRD), UV-Vis. spectrometer, and Ato
... Show MorePorous materials play an important role in creating a sustainable environment by improving wastewater treatment's efficacy. Porous materials, including adsorbents or ion exchangers, catalysts, metal–organic frameworks, composites, carbon materials, and membranes, have widespread applications in treating wastewater and air pollution. This review examines recent developments in porous materials, focusing on their effectiveness for different wastewater pollutants. Specifically, they can treat a wide range of water contaminants, and many remove over 95% of targeted contaminants. Recent advancements include a wider range of adsorption options, heterogeneous catalysis, a new UV/H2O
Research was carried out antibacterial of (Citrus limon) juice on Acnevulgaris. Samples were obtained from individuals having (Pimples) by swabbing their faces. Substances natural from plants are promising to treat disease cause Acnevulgaris, the study in vitro biological activity of the juice, as well as bacterocin cultivated and fruits was investigated on two strain bacteria (Propionibacterium acnes, Staphylococcus epidermidis). The new antimicrobial (bacteriocin and Citrus juice) is ongoing search. This study used s juice at different concentrations at (20%, 30%, 40%, 60%, 80% and 100%). The Bacteriocin produced from local P. fluorescens isolates from wound infection and majority of isolates were found to produce crude Bacteriocin were (
... Show MoreMicroalgae present much usefulness for antimicrobial research because of its enormous biodiversity and rapid growth rate. From this study results it is reaveled that Chlamydomonas reinhardtii were isolated from a pond of water in the province of Diwaniyah. The culture supernatants were obtained when extracted with methanol solvent. Antimicrobial activity of extracts was tested for pathogens, and the best inhibition zone obtained was against Candida albicans (32mm), S.aureus (15mm), and to E.coli (9mm). While it showed no effect against both S.epidermidis and Klebsiella spp. Biofilm was formed by all tested isolates with differences in its strength formation. The C. reinhardtii
... Show MoreMechanical and thermal properties of composites, consisted of unsaturated polyester resin, reinforced by different kinds of natural materials (Orange peels and Date seeds) and industrial materials (carbon and silica) with particle size 98 µm were studied. Various weight ratios, 5, 10, and 15 wt. % of natural and industrial materials have been infused into polyester. Tensile, three-point bending and thermal conductivity tests were conducted for the unfilled polyester, natural and industrial composite to identify the weight ratio effect on the properties of materials. The results indicated that when the weight ratio for polyester with date seeds increased from 10% to 15%, the maximum Young’s modulus decreased by 54%. When the weight rat
... Show More