Preferred Language
Articles
/
sRb_BIcBVTCNdQwCgS3N
Utilizing different types of deep learning models for classification of series arc in photovoltaics systems
...Show More Authors

Crossref
View Publication
Publication Date
Tue Apr 02 2019
Journal Name
Artificial Intelligence Research
A three-stage learning algorithm for deep multilayer perceptron with effective weight initialisation based on sparse auto-encoder
...Show More Authors

A three-stage learning algorithm for deep multilayer perceptron (DMLP) with effective weight initialisation based on sparse auto-encoder is proposed in this paper, which aims to overcome difficulties in training deep neural networks with limited training data in high-dimensional feature space. At the first stage, unsupervised learning is adopted using sparse auto-encoder to obtain the initial weights of the feature extraction layers of the DMLP. At the second stage, error back-propagation is used to train the DMLP by fixing the weights obtained at the first stage for its feature extraction layers. At the third stage, all the weights of the DMLP obtained at the second stage are refined by error back-propagation. Network structures an

... Show More
View Publication
Crossref (1)
Crossref
Publication Date
Wed Jun 15 2022
Journal Name
Malaysian Journal Of Science
STUDY THE RELATIONSHIP BETWEEN BREMSSTRAHLUNG DOSE RATE AND THE ENERGY OF BETA RAY FOR DIFFERENT TYPES OF SHIELD
...Show More Authors

The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each

... Show More
Preview PDF
Publication Date
Wed Jun 15 2022
Journal Name
Malaysian Journal Of Science
STUDY THE RELATIONSHIP BETWEEN BREMSSTRAHLUNG DOSE RATE AND THE ENERGY OF BETA RAY FOR DIFFERENT TYPES OF SHIELD
...Show More Authors

The dose rate for bremsstrahlung radiation from beta particles with energy (1.710) MeV and (2.28) MeV which comes from (32P and 90Y) beta source respectively have been calculated through six materials (polyethylene, wood, aluminum, iron, tungsten and lead) for first shielding material with thickness (x=1) mm which are putting between beta sources and second shield (polyethylene, aluminum and lead) with thickness (1, 2 &4) mm have been calculated. The distance between beta source and second shield is constant (D=1) cm. This dose rate was found by program called Rad Pro Calculator (version 3.26). The results of dose rate of beta particles were plotted as a function to the atomic number (Z) for first shield materials for each

... Show More
View Publication
Scopus (2)
Scopus Crossref
Publication Date
Tue Oct 01 2013
Journal Name
International Journal Of Biological Macromolecules
Characterization and determination of lignin in different types of Iraqi phoenix date palm pruning woods
...Show More Authors

View Publication
Scopus (24)
Crossref (21)
Scopus Clarivate Crossref
Publication Date
Sun Oct 31 2021
Journal Name
Eastern-european Journal Of Enterprise Technologies
Distinguishing of different tissue types using K-Means clustering of color segmentation
...Show More Authors

Millions of lives might be saved if stained tissues could be detected quickly. Image classification algorithms may be used to detect the shape of cancerous cells, which is crucial in determining the severity of the disease. With the rapid advancement of digital technology, digital images now play a critical role in the current day, with rapid applications in the medical and visualization fields. Tissue segmentation in whole-slide photographs is a crucial task in digital pathology, as it is necessary for fast and accurate computer-aided diagnoses. When a tissue picture is stained with eosin and hematoxylin, precise tissue segmentation is especially important for a successful diagnosis. This kind of staining aids pathologists in disti

... Show More
View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Crossref
Publication Date
Wed Dec 14 2016
Journal Name
Journal Of Baghdad College Of Dentistry
Assessment of Enamel Surface after Debonding of Different Types of Esthetic Brackets (An In Vitro Study)
...Show More Authors

Background: Debonding orthodontic brackets and removal of residual bonding material from the enamel surface include critical steps that may cause enamel damage. The aim of the present study was to evaluate and compare the site of bond failure and enamel surface damage after debonding of three types of esthetic brackets (composite, ceramic, sapphire) bonded with light cure composite and resin-modified glass ionomer adhesive. Materials and methods: Seventy two maxillary premolars teeth were divided into three groups each group consisted of 24 teeth according to the type of brackets. Each group was subdivided into two subgroups (12 teeth for each) according to the bonding material that was used. After 7 days of bonding procedure, the brackets

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Fri Feb 28 2025
Journal Name
Energies
Synergizing Machine Learning and Physical Models for Enhanced Gas Production Forecasting: A Comparative Study of Short- and Long-Term Feasibility
...Show More Authors

Advanced strategies for production forecasting, operational optimization, and decision-making enhancement have been employed through reservoir management and machine learning (ML) techniques. A hybrid model is established to predict future gas output in a gas reservoir through historical production data, including reservoir pressure, cumulative gas production, and cumulative water production for 67 months. The procedure starts with data preprocessing and applies seasonal exponential smoothing (SES) to capture seasonality and trends in production data, while an Artificial Neural Network (ANN) captures complicated spatiotemporal connections. The history replication in the models is quantified for accuracy through metric keys such as m

... Show More
View Publication Preview PDF
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed Jun 01 2022
Journal Name
Iraqi Journal Of Physics
Effects of Hydrogen Peroxide Concentration on Properties of Black Silicon Fabricated by Two-Step Silver-Assisted Wet Chemical Etching for Photovoltaics
...Show More Authors

Crystalline silicon (c-Si) has low optical absorption due to its high surface reflection of incident light. Nanotexturing of c-Si which produces black silicon (b-Si) offers a promising solution. In this work, effect of H2O2 concentrations towards surface morphological and optical properties of b-Si fabricated by two-step silver-assisted wet chemical etching (Ag-based two-step MACE) for potential photovoltaic (PV) applications is presented. The method involves a 30 s deposition of silver nanoparticles (Ag NPs) in an aqueous solution of AgNO3:HF (5:6) and an optimized etching in HF:H2O2:DI H2O solution under 0.62 M, 1.85 M, 2.47 M, and 3.7 M concentrations of H2O<

... Show More
View Publication Preview PDF
Crossref (4)
Crossref
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Face Recognition and Emotion Recognition from Facial Expression Using Deep Learning Neural Network
...Show More Authors
Abstract<p>Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.</p>
View Publication
Scopus (8)
Crossref (2)
Scopus Crossref
Publication Date
Tue Aug 10 2021
Journal Name
Design Engineering
Lossy Image Compression Using Hybrid Deep Learning Autoencoder Based On kmean Clusteri
...Show More Authors

Image compression plays an important role in reducing the size and storage of data while increasing the speed of its transmission through the Internet significantly. Image compression is an important research topic for several decades and recently, with the great successes achieved by deep learning in many areas of image processing, especially image compression, and its use is increasing Gradually in the field of image compression. The deep learning neural network has also achieved great success in the field of processing and compressing various images of different sizes. In this paper, we present a structure for image compression based on the use of a Convolutional AutoEncoder (CAE) for deep learning, inspired by the diversity of human eye

... Show More