This paper demonstrates an experimental and numerical study on the behavior of reinforced concrete (RC) columns with longitudinal steel embedded tubes positioned at the center of the column cross-section. A total of 12 pin-ended square sectional columns of 150 × 150 mm having a total height of 1400 mm were investigated. The considered variables were the steel tube diameters of 29, 58, and 76 mm and the load eccentricity (0, 50, and 150) mm. Accordingly, these columns were divided into three groups (four columns in each group) depending on the load eccentricity (e) to column depth (h) ratio (e/h = 0, 1/3, and 1). For each group, one column was solid (reference), and the other three columns contained steel tubes with hollow ratios of (3, 12, and 20) % depending on tube diameters used. The results were recorded, and the influence of steel tubes and eccentricities on the results was obtained and discussed. The experimental results indicated an improvement in the overall behavior of eccentric columns when steel embedded tubes are used. The maximum gains in strength and ductility were about 59% and 33% respectively, for the hollow ratio of 20% with e/h = 1. Comparable results to the experimental ones were also obtained by nonlinear finite element analysis (FEA) using ABAQUS software. The comparisons showed good agreement in terms of ultimate loads and load-deflection relationships. In addition, interaction diagrams for the test columns have also been obtained using FEA and strictly compared with similar diagrams belonging to RC columns having no tubes but same hollow ratios.
The aim of this research is to calculate mass transfer coefficient, kd, during cathodic protection of low carbon steel in neutral seawater (3.5% W/V NaCl in distilled water with pH = 7). Two types of cathodic protection were used:
First: Sacrificial anode cathodic protection (SACP) were a pipeline of steel carrying seawater using zinc as a sacrificial anode and with variable temperatures ranged (0 – 45oC) and volumetric flow rate ranged (5 – 900 lit/hr). It was found that the kd increases with increasing temperature and volumetric flow rate of seawater, where kd ranged (0.24×10-6 – 41.6×10-6 m/s).
Second: Impressed current cathodic pr
... Show MoreThe inhibitor property of curcuma longa L. extract in different concentrations of simulated refinery wastewater (0.05% - 2% wt) and at various temperatures (30, 35 and 40 ˚C) was investigated using weight loss method. The results showed that the presence of about 1.2 % (v/v) of curcuma extract gave about 84% inhibition indicating its effectiveness on mild steel corrosion in simulated refinery wastewater, besides the adsorption process on the mild steal surface obeyed the Langmuir adsorption isotherm.
Phenylthiourea (PHTU),was tested as inhibitor for the corrosion of low carbon steel in different HCI acid concentration by mass loss ,and polarization measurements .it was found that (PHTU) is a good inhibitor for the corrosion of low carbon steel in 1,3,and 5N HCI solution ,and its inhibition efficiency (0) increases with its concentration and attains approximately 97% at l g/I .polarization curves indicate that (PHTU) acts as an anodic type inhibitor .the inhibitor was adsorbed on the low carbon steel surface according to the Langmuir adsorption isotherm model. Results show that the rate of corrosion of low carbon steel increased with increasing temperature o
... Show MoreIn this paper, Response Surface Method (RSM) is utilized to carry out an investigation of the impact of input parameters: electrode type (E.T.) [Gr, Cu and CuW], pulse duration of current (Ip), pulse duration on time (Ton), and pulse duration off time (Toff) on the surface finish in EDM operation. To approximate and concentrate the suggested second- order regression model is generally accepted for Surface Roughness Ra, a Central Composite Design (CCD) is utilized for evaluating the model constant coefficients of the input parameters on Surface Roughness (Ra). Examinations were performed on AISI D2 tool steel. The important coefficients are gotten by achieving successfully an Analysis of V
... Show MoreThe effect of time (or corrosion products formation) on corrosion rates of carbon steel pipe in aerated 0.1N NaCl
solution under turbulent flow conditions is investigated. Tests are conducted using electrochemical polarization
technique by determining the limiting current density of oxygen reduction in Reynolds number range of 15000 to 110000
and temperature range of 30 to 60oC. The effect of corrosion products formation on the friction factor is studied and
discussed. Corrosion process is analyzed as a mass transfer operation and the mass transfer theory is employed to
express the corrosion rate. The results are compared with many proposed models particularly those based on the
concept of analogy among momentum, heat,
Curcumin (Cur) possesses remarkable pharmacological properties, including cardioprotective, neuroprotective, antimicrobial, and anticancer activities. However, the utilization of Cur in pharmaceuticals faces constraints owing to its inadequate water solubility and limited bioavailability. To overcome these hurdles, there has been notable focus on exploring innovative formulations, with nanobiotechnology emerging as a promising avenue to enhance the therapeutic effectiveness of these complex compounds. We report a novel safe, effective method for improving the incorporation of anticancer curcumin to induce apoptosis by reducing the expression levels of miR20a and miR21. The established
This research examines the use of vibratory treatments to reduce residual stresses in small welded parts. In this experimental investigation, a post weld vibration treatment was applied to T- A106 steel pipe fitting specimens to study the effect of the treatment on the residual stress and the hardness of the material. The vibratory stress relief treatment was carried out at different vibration frequency. The results have demonstrated that post-weld vibratory stress relief of small size fittings is possible and residual stress may be relieved, and the treatment may be an alternative method for heat treatment especially when unchange in dimensions and material stability are required.
In this research is to study the influence of the aging heat treatment on the pitting corrosion resistance of martensitic stainless steel (MSS), where a number of specimens from martensitic stainless steel were subjected to solution treatment at 1100 oC for one hour followed by water quenching then aging in the temperatures range (500-750) oC for different holding times (1,5,10,15&20) hr. Accelerated chemical corrosion test and immersion chemical corrosion test were performed on samples after heat treatment. The results of the research showed that the pitting corrosion resistance is significantly affected by the aging temperature. Where found that the aging samples at a temperature of 500 °C have the highest ra
... Show MoreBackground: Numerous methods have been described for achievement of Intermaxillary fixation in the treatment of fractures of facial skeleton. Conventional methods like Erich arch bars and eyelet wires are currently the most common methods for achieving intermaxillary fixation (IMF), however, they have their own disadvantages. Since 1989, IMF using intraoral self-tapping IMF screws has been introduced for treatment of mandibular fractures. The aim of this study was to evaluate the efficacy, advantages, disadvantages and potential complications associated with using of self-tapping IMF screws in the treatment of mandibular fractures. Material and Methods: Twenty patients with favorable mandibular fractures, attended to Oral and Maxillofacial
... Show MoreThe mechanical properties and microstructure of hot-rolled steel are critical in determining its performance in industrial applications, particularly when exposed to elevated temperatures. This study examines the effects of varying temperatures and soaking times on these properties through a series of controlled experiments. The primary objective was to optimize the key response parameters, including tensile strength, yield strength, and elongation, by analyzing the influence of temperature and time. A full factorial design approach was used, applying the desirability function theory to explore all possible combinations and identify optimal processing conditions. The experimental results showed that the soaking time played a critica
... Show More