Earth dams in regions with moderate to high seismic activity are crucial for protecting downstream communities. Iraq and its neighboring areas have seen recurrent seismic activity, notably the 2017 Halabja Earthquake, which potentially compromised the integrity of the existing earth dam. The Darbandikhan Dam, affected by an earthquake, has inadequacies in its crest and downstream slope, presenting a greater danger of significant earthquake-induced damage compared to cyclic shocks. Consequently, evaluating the dam's safety is essential for safeguarding downstream residents and identifying optimal ways to avert slope stability failure amid recurrent seismic activity. Iraq's seismicity map is being updated to reflect earthquake magnitude, highlighting the need for immediate action. Stone columns are a ground improvement technique that utilizes compacted stone columns to enhance soil strength by increasing shear strength and reducing excess pore water pressure in non-cohesive soils. The behavior of prop stone columns on slopes under static and dynamic loads has not been extensively investigated. This study the influence of stone columns on the stability of the downstream slope of the Al-Adhaim Earth Dam in Diyala Governorate, Iraq, under static and dynamic loads induced by four earthquakes with a peak ground acceleration of 0.2 g for durations of 15 and 30 seconds, using Geo Studio software for various scenarios. The findings indicated that the stone column resulted in a very slight improvement in the safety factor of the downstream slope under static load conditions. The presence of the stone column significantlymproved the safety factor during all seismic occurrences relative to its absence.
This paper present a study about effect of the random phase and expansion of the scale sampling factors to improve the monochrome image hologram and compared it with previous produced others. Matlab software is used to synthesize and reconstruction hologram.
Sustainable crop production in a coarse soil texture is challenging due to high water permeability and low soil water holding capacity. In this paper, subsurface water retention technology (SWRT) through impermeable polyethylene membranes was placed at depth 35 cm below ground surface and within the root zone to evaluate and compare the impact of these membranes and control treatment (without using the membranes) on yield and water use efficiency of eggplant inside the greenhouse. The study was conducted in Al-Fahamah Township, Baghdad, Iraq during spring growing season 2017. Results demonstrated the yield and water use efficiencies were 3.483 kg/m2 and 5.653 kg/m3, respectively for SWRT treatment p
... Show MoreThe aim of present work is to improve mechanical and fatigue properties for Aluminum alloy7049 by using Nano composites technique. The ZrO2 with an average grain diameter of 30-40 nm, was selected as Nano particles, to reinforce Aluminum alloy7049 with different percentage as, 2, 4, 6 and 7 %. The Stir casting method was used to fabricate the Nano composites materials due to economical route for improvement and processing of metal matrix composites. The experimental results were shown that the adding of zirconium oxide (ZrO2) as reinforced material leads to improve mechanical properties. The best percentage of improvement of mechanical properties of 7049 AA was with 4% wt. of ZrO2 about (7.76% ) for ultim
... Show MoreLand forms are result from interaction between lithosphere, atmosphere, hydrosphere and biosphere. Lithosphere composed of lithologic units and the main units of the study area are: limestone, marl, marley limestone, sandstone, pebbly sandstone, mudstone, claystone and secondary gypsum in addition to Quaternary sediments. Landforms of the study area can be subdivided according to their origin into many units: 1- Structural- denudational: plateau, mesas, hills, cliffs and wadis; 2- Denudational: desert pavement and mushroom rock; 3-Mass movements; 4- Solution: lake, salt marsh, piping caves; 5- Springs; 6- Fluvial: terraces, alluvial fan, infilled wadi, flood plain; 7- Drainage units; 8-Evaporational: sabkha, secondary
... Show MoreThis research aims to identify how organizational compatibility, which represents the independent variable, affects higher performance, which is considered a dependent variable, given the importance of these variables in industrial organizations and their clear impact on their stability, survival, and growth in the light of changing environmental challenges. Where the practical research problem was represented by the weakness of awareness of the importance toward organizational compatibility and its dimensions (organizational loyalty, organizational similarity, affiliation or membership, compatibility with goals, and compatibility with values), which is meant by the individual's compatibility with the organization in which he/she w
... Show MoreThis study investigates the characterization and mechanical performance of Stone Mastic Asphalt (SMA) mixtures modified with two types of polymers: styrene–butadiene–styrene (SBS) and high-molecular-weight polyethylene (PE). Neat asphalt cement PG 64-16 was modified using a higher content of SBS and PE at concentrations of 6%, 7%, and 8% by weight of asphalt through the dry blending method to produce Highly Modified Asphalts (HiMA). The physical and rheological properties of the modified binders were evaluated using penetration, softening point, rotational viscosity, and dynamic shear rheometer (DSR) tests. Also, their phase compatibility and morphological changes were evaluated using the storage stability testing and scanning electron
... Show MoreWater contamination is a pressing global concern, especially regarding the presence of nitrate ions. This research focuses on addressing this issue by developing an effective adsorbent for removing nitrate ions from aqueous solutions. two adsorbents Chitosan-Zeolite-Zirconium (Cs-Ze-Zr composite beads and Chitosan-Bentonite-Zirconium Cs-Bn-Zr composite beads were prepared. The study involved continuous experimentation using a fixed bed column with varying bed heights (1.5 and 3 cm) and inlet flow rates (1 and 3 ml/min). The results showed that the breakthrough time increased with higher bed heights for both Cs-Ze-Zr and Cs-Bn-Zr composite beads. Conversely, an increase in flow rate led to a decrease in breakthrough time. Notab
... Show More