This study reports testing results of the transient response of T-shape concrete deep beams with large openings due to impact loading. Seven concrete deep beams with openings including two ordinary reinforced, four partially prestressed, and one solid ordinary reinforced as a reference beam were fabricated and tested. The effects of prestressing strand position and the intensity of the impact force were investigated. Two values for the opening’s depth relative to the beam cross-section dimensions were inspected under the effect of an impacting mass repeatedly dropped from different heights. The study revealed that the beam’s transient deflection was increased by about 50% with greater amplitudes for response oscillations due to impact loading as the impact force increased twice. The results showed that the transient strains in the reinforcement and concrete increased when increasing the opening depth with higher amplitudes for the response oscillations, whereas it had a minimal effect on the beam’s transient deflection. The reinforcement and concrete strain results indicated a higher damping for the strains as the prestressing strands were introduced. Comparison with solid deep beam response showed remarkable increase in the beam deflection and strains with greater amplitudes for response oscillations when large openings were introduced in the web.
The convolutional neural networks (CNN) are among the most utilized neural networks in various applications, including deep learning. In recent years, the continuing extension of CNN into increasingly complicated domains has made its training process more difficult. Thus, researchers adopted optimized hybrid algorithms to address this problem. In this work, a novel chaotic black hole algorithm-based approach was created for the training of CNN to optimize its performance via avoidance of entrapment in the local minima. The logistic chaotic map was used to initialize the population instead of using the uniform distribution. The proposed training algorithm was developed based on a specific benchmark problem for optical character recog
... Show MoreIts well known that understanding human facial expressions is a key component in understanding emotions and finds broad applications in the field of human-computer interaction (HCI), has been a long-standing issue. In this paper, we shed light on the utilisation of a deep convolutional neural network (DCNN) for facial emotion recognition from videos using the TensorFlow machine-learning library from Google. This work was applied to ten emotions from the Amsterdam Dynamic Facial Expression Set-Bath Intensity Variations (ADFES-BIV) dataset and tested using two datasets.
Castellated columns are structural members that are created by breaking a rolled column along the center-line by flame after that rejoining the equivalent halves by welding such that for better structural strength against axial loading, the total column depth is increased by around 50 percent. The implementation of these institutional members will also contribute to significant economies of material value. The main objectives of this study are to study the enhancement of the load-carrying capacity of castellated columns with encasement of the columns by Reactive Powder Concrete (RPC) and lacing reinforcement, and serviceability of the confined castellated columns. The Castellated columns with RPC and Lacing Reinforcement improve com
... Show MoreAbstract Physical requirements are an important priority for the development of football gymnastics coaches because the nature of performance is interconnected and interconnected in terms of the player's duties in the match. In the gameplay situations, the player must perform the skill with strength and speed coupled with accuracy and the reactions of the colleague and competitor alike, which represents the normal reality of the football gymnasium Skilled exercises are one of the most suitable technical side exercises as they are built according to the components of the skill requirements of the game and the nature of its performance, which appear on the gro
... Show MoreA new results for fusion reactivity and slowing-down energy distribution functions for controlled thermonuclear fusion reactions of the hydrogen isotopes are achieved to reach promising results in calculating the factors that covered the design and construction of a given fusion system or reactor. They are strongly depending upon their operating fuels, the reaction rate, which in turn, reflects the physical behavior of all other parameters characterization of the system design
Background/Objectives: The purpose of this study was to classify Alzheimer’s disease (AD) patients from Normal Control (NC) patients using Magnetic Resonance Imaging (MRI). Methods/Statistical analysis: The performance evolution is carried out for 346 MR images from Alzheimer's Neuroimaging Initiative (ADNI) dataset. The classifier Deep Belief Network (DBN) is used for the function of classification. The network is trained using a sample training set, and the weights produced are then used to check the system's recognition capability. Findings: As a result, this paper presented a novel method of automated classification system for AD determination. The suggested method offers good performance of the experiments carried out show that the
... Show MoreA set of hydro treating experiments are carried out on vacuum gas oil in a trickle bed reactor to study the hydrodesulfurization and hydrodenitrogenation based on two model compounds, carbazole (non-basic nitrogen compound) and acridine (basic nitrogen compound), which are added at 0–200 ppm to the tested oil, and dibenzotiophene is used as a sulfur model compound at 3,000 ppm over commercial CoMo/ Al2O3 and prepared PtMo/Al2O3. The impregnation method is used to prepare (0.5% Pt) PtMo/Al2O3. The basic sites are found to be very small, and the two catalysts exhibit good metal support interaction. In the absence of nitrogen compounds over the tested catalysts in the trickle bed reactor at temperatures of 523 to 573 K, liquid hourly space v
... Show MoreClinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b
Multiple linear regressions are concerned with studying and analyzing the relationship between the dependent variable and a set of explanatory variables. From this relationship the values of variables are predicted. In this paper the multiple linear regression model and three covariates were studied in the presence of the problem of auto-correlation of errors when the random error distributed the distribution of exponential. Three methods were compared (general least squares, M robust, and Laplace robust method). We have employed the simulation studies and calculated the statistical standard mean squares error with sample sizes (15, 30, 60, 100). Further we applied the best method on the real experiment data representing the varieties of
... Show More