The synthesis of the bisaldehyde ligand 2-(1,1-dimethyl-1,3-dihydro-2H-benzo[e]indol-2-ylidene)malonaldehyde (B) and its coordinated compounds with Cr(III), Mn(II), Fe(II), Co(II), Ni(II) and Cu(II) ions are reported. The synthetic route of B was completed by adopting the Vilsmeier-Haack reaction. This was based on the mixing of 1,1,2-trimethyl-1H-benzo[e]indole with phosphoryl trichloride and N, N-dimethylformamide (anhydrous) that gave the aminomethylenemalondialdehyde. The use of POCl3 and DMF was aimed to give the Vilsmeier-Haack intermediate, which was kept at 5°C and then heated with stirring at 85°C. The addition of an aqueous NaOH solution (35%) to the reaction mixture resulted in the isolation of B. The monomeric coordinated compounds are isolated from the mixing of B with selected metal ions (Cr(III), Mn(II), Fe(II), Co(II) Ni(II) and Cu(II)) in a mixture of EtOH/DMF medium in a 1:1 mole ratio of M:L. The structural characterisation of the prepared compounds was performed through a range of physicochemical methods (FT-IR, electronic spectroscopy, mass and 1H, 13C-NMR spectra, elemental microanalysis, magnetic susceptibility and molar conductance). The analytical and spectroscopic data indicated the isolation of six-coordinate monomeric complexes with the general formula; [Cr(B)Cl)2(H2O)2]Cl, [Mn(B)Cl)2(H2O)2] and four-coordinate monomeric complexes of the general formula [Fe(B)(Cl)2] and [M(B)Cl)(H2O)]Cl (where M(II)= Co, Ni and Cu). The antimicrobial activity of the ligand and its coordinated compounds was explored towards G+ and G- bacterial strains and fungal species. The collected data indicated that the coordinated compounds became potentially more active, compared with B.
Three of imide intermediate products were synthesized by reacting of phthalic anhydride with glycine (2a), and tetrachloro phthalic anhydride with glycine , (S)-2-[(tert-Butoxycarbonyl)amino]-3-aminopropionic acid ( 2b,c) respectively in dry toluene with azeotropic removal of water using Dean- stark apparatus then carboxyl functional group activated by refluxing with thionyl chloride, the resulted acid chloride (3a-c) were reacted with different amine (5-flourouracil, 4-chloroaniline, 4-bromoaniline, 2-amino thiazole, and pyrrolidine) (4a-e) , the resulted products consider as
... Show MoreIn the present work, the phthalic acid (phthH2) and 1.10 phenonthroline (phen), and their complexes were synthesized and isolated as [M(phth)(phen)2], Mn(II), Fe(II), Co(II), Ni(II) Cu(II), Zn(II), and Cd(II) ions. These complexes were characterized by elemental analysis, melting point, conductivity, percentage metal, UV–Vis, FT-IR, and magnetic moment measurements. The molar conductance indicates that all the metal complexes in DMSO are nonelectrolytic. phthalic acid (phtha), and 1,10-Phenanthroline (phen), behaved as bidentate, coordinating to the metal ion through their two oxygen and two pyridinyl nitrogen atoms respectively, as corroborated by. Electronic spectra, FTIR, spectroscopy amusement indicated that all the metal complexes ad
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M 2 Ions in general composition ,[M(Leu) 2 (SMX)] Where L leucine (C 6 H 13 NO 2 )symbolized (LeuH) as a primary ligand and Sulfamethoxazole C 10 H 11 N 3 O 3 S) symbolized (SMX)) as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in(v/v) ethanol /water as solvent containing NaOH. The reaction required the following [(metal: 2(Na Leu --): (SMX )] molar ratios with M(II) ions, Were M ( Mn ( II),Co (II),Ni(II),Cu( II),Zn (II),Cd(II)and Hg( The UV Vis and magnetic moment data revealed an octahedral geometry around M(II), The conductivity data show a non electrolytic nature of the complexes . The
... Show MoreIn this work, the preparation of some new oxazolidine and thiazolidine derivatives has been conducted. This was done over two steps; the first step included the synthesis of Schiff bases A1-A5 in 72-88% yields by the condensation of isonicotinic acid hydrazide and aldehydes. The second step includes the cyclization of derivatives A1-A5 with glycolic acid and thioglycolic acid to obtain the desired products, oxazolidine derivatives B1-B5 (44-60% yields) and thiazolidine derivatives C1-C5 (41-61% yields), respectively. The structure of the prepared compounds was characterized using FT-IR, 1H NMR, and 13C NMR spectroscopy. Some of the produced compounds were tested for antioxidant properties.
In this work a series of fourteen new compounds were synthesized. Compound [1] was formed from the reaction of 2-aminobenzothiazole and p-bromophenacyl bromide. Aldehyde group [2] was obtained from the reaction of compound [1] with pocl3 in presence of DMF and CHCl3 .After that shiff bases have been synthesized from the reaction of compound [2] with different aromatic amine to give new shiff bases [3- 5]. These new shiff bases have been reduced to their corresponding amine [6-8] by means of sodium borohydride. Then reaction of shiff bases [3-5] with phenyl isocyanate gives 3-cyclic lactam derivatives [9-11]. 3-cyclic Oxazepine derivatives [12-14] were obtained by reaction of shiff bases [3-5] with succinic anhydride. These new formed co
... Show MoreAnew mixed compound complexes derived from 2-phenyl-2-(o-tolylamino) Acetonitrile as primary ligand (L1) and histidine (L2) as secondary ligand have been prepared and characterized by conventional techniques, elemental microanalysis (C.H.N), Fourier transform infrared, ultra violet-visible spectra, , flame atomic absorption, molar conductivity, magnetic susceptibility measurement and 1H-NMR spectra. From IR data which appear chelating behavior of the amino acid ligand (L2) toward transition metal ions is via carboxylate oxygen, amino nitrogen and imidazol nitrogen as tridentate ligand while second ligand (L1) chelating through N-nitrile and N-aniline, according to all above technics the octahedral shapes were expected for these complexes as
... Show More