In every country in the world, there are a number of amputees who have been exposed to some accidents that led to the loss of their upper limbs. The aim of this study is to suggest a system for real-time classification of five classes of shoulder girdle motions for high-level upper limb amputees using a pattern recognition system. In the suggested system, the wavelet transform was utilized for feature extraction, and the extreme learning machine was used as a classifier. The system was tested on four intact-limbed subjects and one amputee, with eight channels involving five electromyography channels and three-axis accelerometer sensor. The study shows that the suggested pattern recognition system has the ability to classify the shoulder girdle motions for high-level upper limb motions with 88.4% average classification accuracy for four intact-limbed subjects and 92.8% classification accuracy for one amputee by combining electromyography and accelerometer channels. The outcomes of this study may suggest that the proposed pattern recognition system can help to provide control signals to drive a prosthetic arm for high-level upper limb amputees.
Dates are considered one of the most important foods consumed in Arab countries. Dates are commonly infested with the sawtoothed grain beetle, Oryzaephilus surinamensis. Consequently, the date yield, quantity, and quality (economic value and seed viability) are negatively affected. This study was designed to investigate the effectiveness of air evacuation as eco-friendly and safe control method against adult O. surinamensis. Insects were obtained from the infested date purchased from a private store in sakaka city, Aljouf region, Saudi Arabia. Air evacuation (using a vacuum pump) and food deprivation were applied to O. surinamensis, and insect mortality was observed daily in comparison with the control group (a
... Show MoreThe presence of different noise sources and continuous increase in crosstalk in the deep submicrometer technology raised concerns for on-chip communication reliability, leading to the incorporation of crosstalk avoidance techniques in error control coding schemes. This brief proposes joint crosstalk avoidance with adaptive error control scheme to reduce the power consumption by providing appropriate communication resiliency based on runtime noise level. By switching between shielding and duplication as the crosstalk avoidance technique and between hybrid automatic repeat request and forward error correction as the error control policies, three modes of error resiliencies are provided. The results show that, in reduced mode, the scheme achie
... Show MoreThis study presents an adaptive control scheme based on synergetic control theory for suppressing the vibration of building structures due to earthquake. The control key for the proposed controller is based on a magneto-rheological (MR) damper, which supports the building. According to Lyapunov-based stability analysis, an adaptive synergetic control (ASC) strategy was established under variation of the stiffness and viscosity coefficients in the vibrated building. The control and adaptive laws of the ASC were developed to ensure the stability of the controlled structure. The proposed controller addresses the suppression problem of a single-degree-of-freedom (SDOF) building model, and an earthquake control scenario was conducted and simulat
... Show MoreSpraying pesticides is one of the most common procedures that is conducted to control pests. However, excessive use of these chemicals inversely affects the surrounding environments including the soil, plants, animals, and the operator itself. Therefore, researchers have been encouraged to...
The evolution in the field of Artificial Intelligent (AI) with its training algorithms make AI very important in different aspect of the life. The prediction problem of behavior of dynamical control system is one of the most important issue that the AI can be employed to solve it. In this paper, a Convolutional Multi-Spike Neural Network (CMSNN) is proposed as smart system to predict the response of nonlinear dynamical systems. The proposed structure mixed the advantages of Convolutional Neural Network (CNN) with Multi -Spike Neural Network (MSNN) to generate the smart structure. The CMSNN has the capability of training weights based on a proposed training algorithm. The simulation results demonstrated that the proposed
... Show MoreThe flexible joint robot (FJR) typically experiences parametric variations, nonlinearities, underactuation, noise propagation, and external disturbances which seriously degrade the FJR tracking. This article proposes an adaptive integral sliding mode controller (AISMC) based on a singular perturbation method and two state observers for the FJR to achieve high performance. First, the underactuated FJR is modeled into two simple second-order fast and slow subsystems by using Olfati transformation and singular perturbation method, which handles underactuation while reducing noise amplification. Then, the AISMC is proposed to effectively accomplish the desired tracking performance, in which the integral sliding surface is designed to reduce cha
... Show MoreThe atomic properties have been studied for He-like ions (He atom, Li+, Be2+ and B3+ions). These properties included, the atomic form factor f(S), electron density at the nucleus , nuclear magnetic shielding constant and diamagnetic susceptibility ,which are very important in the study of physical properties of the atoms and ions. For these purpose two types of the wave functions applied are used, the Hartree-Fock (HF) waves function (uncorrelated) and the Configuration interaction (CI) wave function (correlated). All the results and the behaviors obtained in this work have been discussed, interpreted and compared with those previously obtained.