The research aimed at identifying the effect of the think, pair, and share strategy by using educational movies on learning jumping opened legs and closed legs skills on vault in artistic gymnastics for women. It also aimed at identifying the group that learned better the skills understudy. The researcher used the experimental method on second-grade College of Physical Education and Sport Sciences female students. Twelve female students were selected from each of the two sections to form the subjects of the study. The main program was applied for eight weeks with one learning session per week. The data was collected and treated using SPSS to conclude that the think, pair, and share strategy and the traditional program have positive effects
... Show MoreIn this work, InSe thin films were deposited on glass substrates by thermal evaporation technique with a deposit rate of (2.5∓0.2) nm/sec. The thickness of the films was around (300∓10) nm, and the thin films were annealed at (100, 200 and 300)°C. The structural, morphology, and optical properties of Indium selenide thin films were studied using X-ray diffraction, Scanning Electron Microscope and UV–Visible spectrometry respectively. X-ray diffraction analyses showed that the as deposited thin films have amorphous structures. At annealing temperature of 100°C and 200°C, the films show enhanced crystalline nature, but at 300°C the film shows a polycrystalline structure with Rhombohedral phas
One of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services through our ca
... Show MoreThis work implements an Electroencephalogram (EEG) signal classifier. The implemented method uses Orthogonal Polynomials (OP) to convert the EEG signal samples to moments. A Sparse Filter (SF) reduces the number of converted moments to increase the classification accuracy. A Support Vector Machine (SVM) is used to classify the reduced moments between two classes. The proposed method’s performance is tested and compared with two methods by using two datasets. The datasets are divided into 80% for training and 20% for testing, with 5 -fold used for cross-validation. The results show that this method overcomes the accuracy of other methods. The proposed method’s best accuracy is 95.6% and 99.5%, respectively. Finally, from the results, it
... Show MoreDeep learning convolution neural network has been widely used to recognize or classify voice. Various techniques have been used together with convolution neural network to prepare voice data before the training process in developing the classification model. However, not all model can produce good classification accuracy as there are many types of voice or speech. Classification of Arabic alphabet pronunciation is a one of the types of voice and accurate pronunciation is required in the learning of the Qur’an reading. Thus, the technique to process the pronunciation and training of the processed data requires specific approach. To overcome this issue, a method based on padding and deep learning convolution neural network is proposed to
... Show MoreOne of the most important features of the Amazon Web Services (AWS) cloud is that the program can be run and accessed from any location. You can access and monitor the result of the program from any location, saving many images and allowing for faster computation. This work proposes a face detection classification model based on AWS cloud aiming to classify the faces into two classes: a non-permission class, and a permission class, by training the real data set collected from our cameras. The proposed Convolutional Neural Network (CNN) cloud-based system was used to share computational resources for Artificial Neural Networks (ANN) to reduce redundant computation. The test system uses Internet of Things (IoT) services th
... Show MoreIn this paper, a handwritten digit classification system is proposed based on the Discrete Wavelet Transform and Spike Neural Network. The system consists of three stages. The first stage is for preprocessing the data and the second stage is for feature extraction, which is based on Discrete Wavelet Transform (DWT). The third stage is for classification and is based on a Spiking Neural Network (SNN). To evaluate the system, two standard databases are used: the MADBase database and the MNIST database. The proposed system achieved a high classification accuracy rate with 99.1% for the MADBase database and 99.9% for the MNIST database