Image segmentation can be defined as a cutting or segmenting process of the digital image into many useful points which are called segmentation, that includes image elements contribute with certain attributes different form Pixel that constitute other parts. Two phases were followed in image processing by the researcher in this paper. At the beginning, pre-processing image on images was made before the segmentation process through statistical confidence intervals that can be used for estimate of unknown remarks suggested by Acho & Buenestado in 2018. Then, the second phase includes image segmentation process by using "Bernsen's Thresholding Technique" in the first phase. The researcher drew a conclusion that in case of utilizing
... Show MoreThe study aimed to reach the best rating for the views and variables in the totals characterized by qualities and characteristics common within each group and distinguish them from aggregates other for the purpose of distinguishing between Iraqi provinces which suffer from deprivation, for the purpose of identifying the status of those provinces in the early allowing interested parties and regulators to intervene to take appropriate corrective action in a timely manner. Style has been used cluster analysis Cluster analysis to reach the best rating to those totals from the provinces that suffer from problems, where the provinces were classified, based on the variables (Edu
... Show MoreAbstract :
The present study aims at identifying the status of the two research variables in the organization under study and specifying the relationship and impact of the authentic leadership with all its four branch dimensions of (self-awareness, transparent relations, balanced processing of information and the moral perspective) on business process reengineering.
The basic problem of the study lies in the attempt to present a new leadership style that is more responsive to the dynamic changes surrounding it based on the authentic leadership behaviors. This is because this pattern has an impact on the nature of the organization's work and its progress.
The research
... Show MoreAbstract
This paper concerned with study the effect of a graphite micro powder mixed in the kerosene dielectric fluid during powder mixing electric discharge machining (PMEDM) of high carbon high chromium AISI D2 steel. The type of electrode (copper and graphite), the pulse current and the pulse-on time and mixing powder in kerosene dielectric fluid are taken as the process main input parameters. The material removal rate MRR, the tool wear ratio TWR and the work piece surface roughness (SR) are taken as output parameters to measure the process performance. The experiments are planned using response surface methodology (RSM) design procedure. Empirical models are developed for MRR, TWR and SR, using the analysis
... Show MoreThe present investigation is concerned for the purification of impure zinc oxide (80-85 wt %) by using petroleum coke
(carbon content is 76 wt %) as reducing agent for the impure zinc oxide to provide pure zinc vapor, which will be
oxidized later by air to the pure zinc oxide.
The operating conditions of the reaction were studied in detail which are, reaction time within the range (10 to 30 min),
reaction temperature (900 to 1100 oC), air flow rate (0.2 to 1 l/min) and weight percentage of the reducing agent
(petroleum coke) in the feed (14 to 30 wt %).
The best operating conditions were (30 min) for the reaction time, (1100 oC) for the reaction temperature, (1 l/min) for
the air flow rate, and (30 wt %) of reducing
The most significant function in oil exploration is determining the reservoir facies, which are based mostly on the primary features of rocks. Porosity, water saturation, and shale volume as well as sonic log and Bulk density are the types of input data utilized in Interactive Petrophysics software to compute rock facies. These data are used to create 15 clusters and four groups of rock facies. Furthermore, the accurate matching between core and well-log data is established by the neural network technique. In the current study, to evaluate the applicability of the cluster analysis approach, the result of rock facies from 29 wells derived from cluster analysis were utilized to redistribute the petrophysical properties for six units of Mishri
... Show MoreWith the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se
... Show MoreThe aim of this study is modeling the transport of industrial wastewater in sandy soil by using finite element method. A washing technique was used to remove the industrial wastewater from the soil. The washing technique applied with an efficient hydraulic gradient to help in transport of contaminant mass by advection. Also, the mass transport equation used in modeling the transport of industrial wastewater from soil includes the sorption and chemical reactions. The sandy soil samples obtained from Al-Najaf Governorate/Iraq. The wastewater contaminant was obtained from Al- Musyiebelectricity power plant. The soil samples were synthetically contaminated with four percentages of 10, 20, 30 and 40% of the contaminant and these percentages calc
... Show MoreProjects suspensions are between the most insistent tasks confronted by the construction field accredited to the sector’s difficulty and its essential delay risk foundations’ interdependence. Machine learning provides a perfect group of techniques, which can attack those complex systems. The study aimed to recognize and progress a wellorganized predictive data tool to examine and learn from delay sources depend on preceding data of construction projects by using decision trees and naïve Bayesian classification algorithms. An intensive review of available data has been conducted to explore the real reasons and causes of construction project delays. The results show that the postpo