In this work, the detection of zinc (Zn) ions that cause water pollution is studied using the CSNPs- Linker-alkaloids compound that was prepared by linking extracted alkaloids from Iraqi Catharanthus roseus plant with Chitosan nanoparticles (CSNPs) using maleic anhydride. This compound is characterized by an X-ray diffractometer (XRD) which shows that it has an orthorhombic structure with crystallite size in the nano dimension. Zeta Potential results show that the CSNPs-Linker-alkaloids carried a positive charge of 54.4 mV, which means it possesses high stability. The Fourier transform infrared spectroscopy (FTIR) shows a new distinct band at 1708.93 cm-1 due to C=O esterification. Scanning electron microscope (SEM) images show that the CSNPs- Linker- alkaloids compound have two shapes in the nano dimension: spherical particles and nanotubes, which may be due to nuclei and growth processes, respectively. The energy gap calculated from the photoluminescence spectrum is equal to 2.5 eV. The Hall effect measurements prove that the synthesized CSNPs- Linker-alkaloids compound is a p-type semiconductor. The cycle voltammetry technique was used to detect the Zn ions in different concentrations in the water by modifying the electrochemical system's glassy carbon electrode (GCE) with a CSNPs-Linker-alkaloids compound. The modified electrode was used to detect Zn ions in the range of (1-8) ppm, which causes water pollution. The best sensor sensitivity R² equals 0.997 for oxidation and 0.993 for reduction. This modified electrode (GCE /CSNPs- Linker-alkaloids) acts as a good biosensor for heavy metals detection in water as well as for biophysics applications.
The proposal of nonlinear models is one of the most important methods in time series analysis, which has a wide potential for predicting various phenomena, including physical, engineering and economic, by studying the characteristics of random disturbances in order to arrive at accurate predictions.
In this, the autoregressive model with exogenous variable was built using a threshold as the first method, using two proposed approaches that were used to determine the best cutting point of [the predictability forward (forecasting) and the predictability in the time series (prediction), through the threshold point indicator]. B-J seasonal models are used as a second method based on the principle of the two proposed approaches in dete
... Show MoreDiverting river flow during construction of a main dam involves the construction of cofferdams, and tunnels, channels or other temporary passages. Diversion channels are commonly used in wide valleys where the high flow makes tunnels or culverts uneconomic. The diversion works must form part of the overall project design since it will have a major impact on its cost, as well as on the design, construction program and overall cost of the permanent works. Construction costs contain of excavation, lining of the channel, and construction of upstream and downstream cofferdams. The optimization model was applied to obtain optimalchannel cross section, height of upstream cofferdam, and height of downstream cofferdamwith minimum construction cost
... Show MoreIn this study, the effect of intersecting ribs with inclined ribs on the heat transfer and flow characteristics of a high aspect ratio duct has been numerically investigated. The Relative roughness pitch (P/e) is 10 and the Reynolds number range from 35,700 to 72,800. ANSYS (Fluent-Workbench 18.0) software has been utilized to solve the Reynolds averaged Navier-Stokes (RANS) equations with the Standard k-ε turbulence model. Three ribbed models have been used in this study. Model 1 which is a just inclined ribs, Model 2 which has a single longitudinal rib at the center with inclined ribs and Model 3 which has two longitudinal ribs at the sides. The results showed that the heat transfer rate has been enhanced when the int
... Show MoreA case–control study (80 patients with chronic hepatitis B virus [HBV] infection and 96 controls) was performed to evaluate the association of an IL12A gene variant (rs582537 A/C/G) with HBV infection. Allele G showed a signifcantly lower frequency in patients compared to controls (31.2 vs. 46.9%; probability [p]=0.009; corrected p [pc]=0.027) and was associated with a lower risk of HBV infection (odds ratio [OR]=0.49; 95% confdence interval [CI]=0.29–0.83). A similar lower risk was associated with genotypes CG (17.5 vs. 29.2; OR=0.25; 95% CI=0.08–0.81; p=0.02) and GG (10.0 vs. 16.7; OR=0.25; 95% CI=0.07–0.91; p=0.036), but the pc value was not signifcant (0.12 and 0.126, respec‑ tively). Serum IL35 levels showed signifcant difere
... Show MoreThe development of information systems in recent years has contributed to various methods of gathering information to evaluate IS performance. The most common approach used to collect information is called the survey system. This method, however, suffers one major drawback. The decision makers consume considerable time to transform data from survey sheets to analytical programs. As such, this paper proposes a method called ‘survey algorithm based on R programming language’ or SABR, for data transformation from the survey sheets inside R environments by treating the arrangement of data as a relational format. R and Relational data format provide excellent opportunity to manage and analyse the accumulated data. Moreover, a survey syste
... Show MoreCommunication of the human brain with the surroundings became reality by using Brain- Computer Interface (BCI) based mechanism. Electroencephalography (EEG) being the non-invasive method has become popular for interaction with the brain. Traditionally, the devices were used for clinical applications to detect various brain diseases but with the advancement in technologies, companies like Emotiv, NeuoSky are coming up with low cost, easily portable EEG based consumer graded devices that can be used in various application domains like gaming, education etc as these devices are comfortable to wear also. This paper reviews the fields where the EEG has shown its impact and the way it has p
The evolution of the Internet of things (IoT) led to connect billions of heterogeneous physical devices together to improve the quality of human life by collecting data from their environment. However, there is a need to store huge data in big storage and high computational capabilities. Cloud computing can be used to store big data. The data of IoT devices is transferred using two types of protocols: Message Queuing Telemetry Transport (MQTT) and Hypertext Transfer Protocol (HTTP). This paper aims to make a high performance and more reliable system through efficient use of resources. Thus, load balancing in cloud computing is used to dynamically distribute the workload across nodes to avoid overloading any individual r
... Show More