Background: Radiation therapy has the ability to destroy healthy cells in addition to cancer cells in the area being treated. However, when radiation combines with doxorubicin, it becomes more effective on breast cancer treatment. Objective: This study aims to clarify the effect of X-ray from LINAC combined with amygdalin and doxorubicin on breast cancer treatment, and the possibility of using amygdalin with X-ray instead of doxorubicin for the breast cancer treatment. Method: Two cell lines were used in this study, the first one was MCF-7 cell line and second one was WRL- 68 normal cell line. These cells were preserved in liquid nitrogen, prepared, developed and tested in the (place). The effect of three x-ray doses combined with amygdalin and with doxorubicin was studied on these strains. Results: Combination of radiation with amygdalin and with doxorubicin, separately, exam revealed no statistically significant difference between x-rays doses (1Gy, 3Gy and 5 Gy) combined with amygdalin and x-rays doses (1Gy, 3Gy and 5 Gy) combined with doxorubicin for MCF-7 and WRL-68.In conclusion: there is possible to be considered amygdalin as a promise breast cancer treatment instead of doxorubicin combined with x-ray.
Stick-slip is kind of vibration which associated with drilling operation in around the bottom hole assembly (BHA) due to the small clearance between drill string & the open hole and due to the eccentric rotating of string. This research presents results of specific experimental study that was run by using two types of drilling mud (Fresh water Bentonite & Polymer), with/without Nanoparticle size materials of MgO in various ratios and computes the rheological properties of mud for each concentration [Yield point, plastic viscosity, Av, PH, filter loss (30 min), filter cake, Mud Cake Friction, Friction Factor]. These results then were used to find a clear effects of Nanoparticle drilling mud rheology on stick - slip strength by sev
... Show MoreThe corrosion of carbon steel in single phase (water with 0.1N NaCl ) and two immiscible phases (kerosene-water) using turbulently agitated system is investigated. The experiments are carried out for Reynolds number (Re) range of 38000 to 95000 corresponding to rotational velocities from 600 to 1400 rpm using circular disk turbine agitator at 40 0C. In two-phase system test runs are carried out in aqueous phase (water) concentrations of 1 % vol., 5 % vol., 8% vol., and 16% vol. mixed with kerosene at various Re. The effect of Reynolds number (Re), percent of dispersed phase, dispersed drops diameter, and number of drops per unit volume on the corrosion rate is investigated and discussed. Test runs are carried out using two types of
... Show MoreThe corrosion inhibition effect of a new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) on mild steel in 1.0 M HCl was investigated using corrosion potential (ECORR) and potentiodynamic polarization. The obtained results indicated that the new furan derivative (furan-2-ylmethyl sulfanyl acetic acid furan-2-ylmethylenehydrazide) (FSFD) has a promising inhibitive effects on the corrosion of mild steel in 1.0 M HCl across all of the conditions examined. The density functional theory (DFT) study was performed on the new furan derivative (FSFD) at the B3LYP/6-311G (d, p) basis set level to explore the relation between their inhibition efficiency and molecular electro
In this paper, an intelligent tracking control system of both single- and double-axis Piezoelectric Micropositioner stage is designed using Genetic Algorithms (GAs) method for the optimal Proportional-Integral-Derivative (PID) controller tuning parameters. The (GA)-based PID control design approach is a methodology to tune a (PID) controller in an optimal control sense with respect to specified objective function. By using the (GA)-based PID control approach, the high-performance trajectory tracking responses of the Piezoelectric Micropositioner stage can be obtained. The (GA) code was built and the simulation results were obtained using MATLAB environment. The Piezoelectric Micropositioner simulation model with th
... Show More