Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zigzag scan is applied on the quantized coefficients and the output are encoded using DPCM, shift optimizer and shift coding for DC while adaptive RLE, shift optimizer then shift coding applied for AC, the other subbands; LH, HL and HH are compressed using the scalar quantization, Quadtree and shift optimizer then shift coding. In this paper, a new flipping block with an adaptive RLE is proposed and applied for image enhancement. After applying DCT system and scalar quantization, huge number of zeros produced with less number of other values, so an adaptive RLE is used to encode this RUN of zeros which results with more compression.Standard medical images are selected to be used as testing image materials such as CT-Scan, X-Ray, MRI these images are specially used for researches as a testing samples. The results showed high compression ratio with high quality reconstructed images
Three-dimensional (3D) image and medical image processing, which are considered big data analysis, have attracted significant attention during the last few years. To this end, efficient 3D object recognition techniques could be beneficial to such image and medical image processing. However, to date, most of the proposed methods for 3D object recognition experience major challenges in terms of high computational complexity. This is attributed to the fact that the computational complexity and execution time are increased when the dimensions of the object are increased, which is the case in 3D object recognition. Therefore, finding an efficient method for obtaining high recognition accuracy with low computational complexity is essentia
... Show More
This study aims at identifying the notion of Post-Occupancy Evaluation (POE) pertinent to the performance of three general hospitals constructed inside the Sulaimani City, tracing the relationship between the quality of the indoor environments and medical staff (doctors and nurses) satisfaction level. Using some indoor environment elements in the right way will positively influence the mood, stress level of the medical staff, and patient recovery as a result. The POE toolkits (AEDET and ASPECT) have been implemented on targeted wards at the selected hospitals. AEDET and ASPECT questionnaires were distributed among 152 medical staff to obtain their perspectives. In total, 112 valid questionnaires were received. The medica
... Show MoreIn this paper Alx Ga1-x As:H films have been prepared by using new deposition method based on combination of flash- thermal evaporation technique. The thickness of our samples was about 300nm. The Al concentration was altered within the 0 x 40.
The results of X- ray diffraction analysis (XRD) confirmed the amorphous structure of all AlXGa1-x As:H films with x 40 and annealing temperature (Ta)<200°C. the temperature dependence of the DC conductivity GDC with various Al content has been measured for AlXGa1-x As:H films.
We have found that the thermal activation energy Ea depends of Al content and Ta, thus the value of Ea were approximately equal to half the value of optical gap.
A spectrophotometric- reverse flow injection analysis (rFIA) method has been proposed for the determination of Nitrazepam (NIT) in pure and pharmaceutical preparations. The method is based upon the coupling reaction of NIT with a new reagent O-Coumaric acid (OCA) in the presence of sodium periodate in an aqueous solution. The blue color product was measured at 632 nm. The variation (chemical and physical parameters) related with reverse flow system were estimated. The linearity was over the range 15 - 450 µg/mL of NIT with detection limits and limit of quantification of 3.425 and 11.417 µg mL-1 NIT,respectively. The sample throughput of 28 samples
... Show MoreBACKGROUND: Vaccine hesitancy and reluctant had an important obstacle in achieving protection and population immunity against coronavirus disease 19 (COVID-19). It is essential to achieve high COVID-19 vaccination acceptance rates among medical students and health care workers to provide recommendations and counseling vaccine hesitant population. AIM: This study aims to identify level of COVID-19 hesitancy, attitude, knowledge, and factors that affect vaccination decision. MATERIALS AND METHODS: A cross-sectional study was done among medical students in Al-Kindy College of Medicine, University of Baghdad, Baghdad, Iraq. Data collection was done through an online Google Forms questionnaire during 2021 from 810 medical students.
... Show MoreThis research takes up address the practical side by taking case studies for construction projects that include the various Iraqi governorates, as it includes conducting a field survey to identify the impact of parametric costs on construction projects and compare them with what was reached during the analysis and the extent of their validity and accuracy, as well as adopting the approach of personal interviews to know the reality of the state of construction projects. The results showed, after comparing field data and its measurement in construction projects for the sectors (public and private), the correlation between the expected and actual cost change was (97.8%), and this means that the data can be adopted in the re
... Show MoreIn high-dimensional semiparametric regression, balancing accuracy and interpretability often requires combining dimension reduction with variable selection. This study intro- duces two novel methods for dimension reduction in additive partial linear models: (i) minimum average variance estimation (MAVE) combined with the adaptive least abso- lute shrinkage and selection operator (MAVE-ALASSO) and (ii) MAVE with smoothly clipped absolute deviation (MAVE-SCAD). These methods leverage the flexibility of MAVE for sufficient dimension reduction while incorporating adaptive penalties to en- sure sparse and interpretable models. The performance of both methods is evaluated through simulations using the mean squared error and variable selection cri
... Show More
