Preferred Language
Articles
/
rhdSOI8BVTCNdQwCEGNZ
Hybrid DWT-DCT compression algorithm & a new flipping block with an adaptive RLE method for high medical image compression ratio
...Show More Authors

Huge number of medical images are generated and needs for more storage capacity and bandwidth for transferring over the networks. Hybrid DWT-DCT compression algorithm is applied to compress the medical images by exploiting the features of both techniques. Discrete Wavelet Transform (DWT) coding is applied to image YCbCr color model which decompose image bands into four subbands (LL, HL, LH and HH). The LL subband is transformed into low and high frequency components using Discrete Cosine Transform (DCT) to be quantize by scalar quantization that was applied on all image bands, the quantization parameters where reduced by half for the luminance band while it is the same for the chrominance bands to preserve the image quality, the zigzag scan is applied on the quantized coefficients and the output are encoded using DPCM, shift optimizer and shift coding for DC while adaptive RLE, shift optimizer then shift coding applied for AC, the other subbands; LH, HL and HH are compressed using the scalar quantization, Quadtree and shift optimizer then shift coding. In this paper, a new flipping block with an adaptive RLE is proposed and applied for image enhancement. After applying DCT system and scalar quantization, huge number of zeros produced with less number of other values, so an adaptive RLE is used to encode this RUN of zeros which results with more compression.Standard medical images are selected to be used as testing image materials such as CT-Scan, X-Ray, MRI these images are specially used for researches as a testing samples. The results showed high compression ratio with high quality reconstructed images  

Crossref
View Publication
Publication Date
Thu Feb 15 2024
Journal Name
Evolving Systems
Boosted Aquila Arithmetic Optimization Algorithm for multi-level thresholding image segmentation
...Show More Authors

View Publication
Scopus (10)
Crossref (6)
Scopus Clarivate Crossref
Publication Date
Thu Apr 30 2020
Journal Name
Journal Of Economics And Administrative Sciences
Comparison Branch and Bound Algorithm with Penalty Function Method for solving Non-linear Bi-level programming with application
...Show More Authors

The problem of Bi-level programming is to reduce or maximize the function of the target by having another target function within the constraints. This problem has received a great deal of attention in the programming community due to the proliferation of applications and the use of evolutionary algorithms in addressing this kind of problem. Two non-linear bi-level programming methods are used in this paper. The goal is to achieve the optimal solution through the simulation method using the Monte Carlo method using different small and large sample sizes. The research reached the Branch Bound algorithm was preferred in solving the problem of non-linear two-level programming this is because the results were better.

View Publication
Crossref
Publication Date
Wed Sep 18 2024
Journal Name
Karbala International Journal Of Modern Science
Synthesis of ZnO: ZrO2 Nanocomposites Using Green Method for Medical Applications
...Show More Authors

View Publication
Scopus (6)
Crossref (2)
Scopus Crossref
Publication Date
Sun Apr 30 2023
Journal Name
Iraqi Journal Of Science
An Evolutionary Algorithm with Gene Ontology-Aware Crossover Operator for Protein Complex Detection
...Show More Authors

     Evolutionary algorithms (EAs), as global search methods, are proved to be more robust than their counterpart local heuristics for detecting protein complexes in protein-protein interaction (PPI) networks. Typically, the source of robustness of these EAs comes from their components and parameters. These components are solution representation, selection, crossover, and mutation. Unfortunately, almost all EA based complex detection methods suggested in the literature were designed with only canonical or traditional components. Further, topological structure of the protein network is the main information that is used in the design of almost all such components. The main contribution of this paper is to formulate a more robust E

... Show More
Scopus (3)
Scopus Crossref
Publication Date
Sun Nov 01 2020
Journal Name
2020 2nd Annual International Conference On Information And Sciences (aicis)
An Enhanced Multi-Objective Evolutionary Algorithm with Decomposition for Signed Community Detection Problem
...Show More Authors

View Publication
Scopus (7)
Crossref (2)
Scopus Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Journal Of Image And Graphics
Normalized-UNet Segmentation for COVID-19 Utilizing an Encoder-Decoder Connection Layer Block
...Show More Authors

The COVID-19 pandemic has had a huge influence on human lives all around the world. The virus spread quickly and impacted millions of individuals, resulting in a large number of hospitalizations and fatalities. The pandemic has also impacted economics, education, and social connections, among other aspects of life. Coronavirus-generated Computed Tomography (CT) scans have Regions of Interest (ROIs). The use of a modified U-Net model structure to categorize the region of interest at the pixel level is a promising strategy that may increase the accuracy of detecting COVID-19-associated anomalies in CT images. The suggested method seeks to detect and isolate ROIs in CT scans that show the existence of ground-glass opacity, which is fre

... Show More
View Publication
Scopus (5)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-nahrain Journal Of Science
Medical Image Denoising Via Matrix Norm Minimization Problems
...Show More Authors

This paper presents the matrix completion problem for image denoising. Three problems based on matrix norm are performing: Spectral norm minimization problem (SNP), Nuclear norm minimization problem (NNP), and Weighted nuclear norm minimization problem (WNNP). In general, images representing by a matrix this matrix contains the information of the image, some information is irrelevant or unfavorable, so to overcome this unwanted information in the image matrix, information completion is used to comperes the matrix and remove this unwanted information. The unwanted information is handled by defining {0,1}-operator under some threshold. Applying this operator on a given ma

... Show More
View Publication
Scopus (3)
Crossref (3)
Scopus Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Medical Image Segmentation using Modified Interactive Thresholding Technique
...Show More Authors

Medical image segmentation is one of the most actively studied fields in the past few decades, as the development of modern imaging modalities such as magnetic resonance imaging (MRI) and computed tomography (CT), physicians and technicians nowadays have to process the increasing number and size of medical images. Therefore, efficient and accurate computational segmentation algorithms become necessary to extract the desired information from these large data sets. Moreover, sophisticated segmentation algorithms can help the physicians delineate better the anatomical structures presented in the input images, enhance the accuracy of medical diagnosis and facilitate the best treatment planning. Many of the proposed algorithms could perform w

... Show More
View Publication Preview PDF
Publication Date
Fri Apr 01 2022
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
An adaptive neural control methodology design for dynamics mobile robot
...Show More Authors

View Publication
Scopus (9)
Crossref (6)
Scopus Crossref
Publication Date
Wed Oct 21 2015
Journal Name
Integrated Journal Of Engineering Research And Technology
A HYBRID CUCKOO SEARCH AND BACK-PROPAGATION ALGORITHMS WITH DYNAMIC LEARNING RATE TO SPEED UP THE CONVERGENCE (SUBPL) ALGORITHM
...Show More Authors

BP algorithm is the most widely used supervised training algorithms for multi-layered feedforward neural net works. However, BP takes long time to converge and quite sensitive to the initial weights of a network. In this paper, a modified cuckoo search algorithm is used to get the optimal set of initial weights that will be used by BP algorithm. And changing the value of BP learning rate to improve the error convergence. The performance of the proposed hybrid algorithm is compared with the stan dard BP using simple data sets. The simulation result show that the proposed algorithm has improved the BP training in terms of quick convergence of the solution depending on the slope of the error graph.