Preferred Language
Articles
/
rhc2WZABVTCNdQwCsIeN
How geometric reverse engineering techniques can conserve our heritage; a case study in Iraq using 3D laser scanning
...Show More Authors
Abstract<p>Laser scanning has become a popular technique for the acquisition of digital models in the field of cultural heritage conservation and restoration nowadays. Many archaeological sites were lost, damaged, or faded, rather than being passed on to future generations due to many natural or human risks. It is still a challenge to accurately produce the digital and physical model of the missing regions or parts of our cultural heritage objects and restore damaged artefacts. The typical manual restoration can become a tedious and error-prone process; also can cause secondary damage to the relics. Therefore, in this paper, the automatic digital application process of 3D laser modelling of artefacts in virtual restoration is presented based on reverse engineering techniques. Two case studies were selected and processed in Iraq to meet the aim of this research and show how reverse engineering approaches can save our culture. The efficiency and safety of the preservation and restoration of cultural relics are improved and visually demonstrated. Different reverse engineering techniques applied to show the geometric potential for such approaches following laser-based 3D data application.</p>
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 01 2018
Journal Name
Journal Of Engineering
Water Quality Assessment and Total Dissolved Solids Prediction using Artificial Neural Network in Al-Hawizeh Marsh South of Iraq
...Show More Authors

The Iraqi marshes are considered the most extensive wetland ecosystem in the Middle East and are located in the middle and lower basin of the Tigris and Euphrates Rivers which create a wetlands network and comprise some shallow freshwater lakes that seasonally swamped floodplains. Al-Hawizeh marsh is a major marsh located east of Tigris River south of Iraq. This study aims to assess water quality through water quality index (WQI) and predict Total Dissolved Solids (TDS) concentrations in Al-Hawizeh marsh based on artificial neural network (ANN). Results showed that the WQI was more than 300 for years 2013 and 2014 (Water is unsuitable for drinking) and decreased within the range 200-300 in years 2015 and 2016 (Very poor water). The develope

... Show More
Publication Date
Sun Jan 01 2012
Journal Name
Iraqi Journal Of Science
EFFECT OF LAND DEGRADATION DEGREE ON THE LAND COVER TYPE USING GIS TECHNOLOGY IN THE WEST OF BAGHDAD/IRAQ
...Show More Authors

In this study is the phenomenon of desertification risk assessment in the Abu Ghraib area west of Baghdad/Iraq, which has an area of about (384.168 km 2), that the annual mean temperature is more than (22 C). Rainfall was low, ranging from the (200 mm) per year for Iraq and (2.82) mm per year of the study area* temperature is high and evaporation is also high (mm 7.73) per year*, so the climate in general of the dry type and the system of soil moisture is the kind of Aridic (Torric). To this study was to identify three indicators to monitor for the period from 2001-2005 using GIS and these indicators are (soil, groundwater and the nature of land use), using ArcGIS 9.1. The results showed that the risk of desertification was part of the leve

... Show More
View Publication
Publication Date
Mon Jun 01 2020
Journal Name
Iraqi Journal Of Physics
Monitoring dust storm using Normalized difference dust index (NDDI) and brightness temperature variation in Simi arid areas over Iraq
...Show More Authors

Dust storms are a natural phenomenon occurring in most areas of Iraq. In recent years, the study of this phenomenon has become important because of the danger caused by increasing desertification at the expense of the green cover as well as its impact on human health. In this study  is important to devote the remote sensing of dust storms and its detection.Through this research, the dust storms can be detected in semi-arid areas, which are difficult to distinguish between these storms and desert areas. For the distinction between the dust storm pixels in the image with those that do not contain dust storm can be applied the Normalized Difference Dust Index (NDDI) and Brightness Temperature variation (BTV). MODIS sensors that carried

... Show More
View Publication Preview PDF
Crossref (7)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Journal Of Engineering
Detection and Diagnosis of Induction Motor Faults by Intelligent Techniques
...Show More Authors

This paper presents a complete design and implementation of a monitoring system for the operation of the three-phase induction motors. This system is built using a personal computer and  two types of sensors (current, vibration) to detect some of the mechanical faults that may occur in the motor. The study and examination of several types of faults including (ball bearing and shaft misalignment faults) have been done through the extraction of fault data by using fast Fourier transform (FFT) technique. Results showed that the motor current signature analysis (MCSA) technique, and measurement of vibration technique have high possibility in the detection and diagnosis of most mechanical faults with high accuracy. Subsequently, diagnosi

... Show More
View Publication Preview PDF
Publication Date
Tue Apr 30 2024
Journal Name
International Journal On Technical And Physical Problems Of Engineering
Deep Learning Techniques For Skull Stripping of Brain MR Images
...Show More Authors

Deep Learning Techniques For Skull Stripping of Brain MR Images

Scopus (1)
Scopus
Publication Date
Sat Jan 01 2022
Journal Name
Latin American Journal Of Solids And Structures
Peak Ground Acceleration Models Predictions Utilizing Two Metaheuristic Optimization Techniques
...Show More Authors

Scopus (15)
Crossref (15)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Aip Conference Proceedings
Comparative analysis of deep learning techniques for lung cancer identification
...Show More Authors

One of the diseases on a global scale that causes the main reasons of death is lung cancer. It is considered one of the most lethal diseases in life. Early detection and diagnosis are essential for lung cancer and will provide effective therapy and achieve better outcomes for patients; in recent years, algorithms of Deep Learning have demonstrated crucial promise for their use in medical imaging analysis, especially in lung cancer identification. This paper includes a comparison between a number of different Deep Learning techniques-based models using Computed Tomograph image datasets with traditional Convolution Neural Networks and SequeezeNet models using X-ray data for the automated diagnosis of lung cancer. Although the simple details p

... Show More
View Publication
Scopus (1)
Scopus Crossref
Publication Date
Fri Jul 01 2016
Journal Name
International Journal Of Computer Science And Mobile Computing
Hybrid Color Image Compression of Hard & Soft Mixed Thresholding Techniques
...Show More Authors

Publication Date
Sat Jan 01 2022
Journal Name
Latin American Journal Of Solids And Structures
Peak Ground Acceleration Models Predictions Utilizing Two Metaheuristic Optimization Techniques
...Show More Authors

View Publication
Crossref (15)
Crossref
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref