The purpose of the study is the city of Baghdad, the capital of Iraq, was chosen to study the spectral reflection of the land cover and to determine the changes taking place in the areas of the main features of the city using the temporal resolution of multispectral bands of the satellite Landsat 5 and 8 for MSS and OLI sensors respectively belonging to NASA and for the period 1999-2021, and calculating the increase and decrease in the basic features of Baghdad. The main conclusions of the study were, This study from 1999 to 2021 and in two different seasons: the Spring of the growing season and Summer the dry season. When using the supervised classification method to determine the differences, the results showed remarkable changes. Where he was in 1999 Normalized Difference Vegetation Index (NDVI) 925km2 and Normalized Difference Water Index (NDWI) 75.3 km2 In the case of an increase during the growth period, while the values decreased during the period of dry to (NDVI) 390.8 km2 and (NDWI) 51.9 km2. As for Soil Adjusted Vegetation Index (SAVI) 1692.9 km2 and Normalized Difference Built up Index (NDBI) 782.1 km2 we notice a decrease in the growth period, while the values increase during the dry period to (SAVI) 2239.1 km2 and (NDBI) 1495.7 km2. In 2021 (NDVI) 242.7 km2 (NDWI) 83.4 km2 in the case of an increase during the growth period, while the values decreased during the period of dry to (NDVI) 122.2 km2 and (NDWI) 73.2 km2. As for (SAVI) 3016.3 km2 (NDBI) 1263.3 km2 we notice a decrease in the growth period, while the values increase during the dry period to (SAVI) 3702.3 km2 and (NDBI) 1882.2 km2
The reaction of 1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one with one equivalent of 4-chlorophenol by coupling reaction afforded (E)-4-((5-chloro-2- hydroxyphenyl)diazenyl)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one. Then azo ligand was characterize using spectroscopic studies ( FTIR,UV-Vis, 1H and 13CNMR, Mass) also micro-elemental analysiz (C.H.N.O). Transition metal chelation with Co(II), Ni(II), Cu(II), and Zn(II) was investigated, revealing 1:2 metal-to-ligand stoichiometry with octahedral geometry. The biological, and industrial application for the azo ligand and it is complexes were evaluated, demonstrating antimicrobial activity against bacterial and fungal strains, with the Zn(II) complex exhibiting superior inhibition. Additionally,
... Show MoreIssam al-Din al-Asfrani's footnote
On the interpretation of the oval
Imam
Issam al-Din Ibrahim Arbashah al-Asfrani
(Th 159 e)
Surah Al-Baqarah (verse 55-911)
Novel bidentate Schiff bases having nitrogen-sulphur donor sequence was synthesized from condensation of racemate camphor, (R)-camphor and (S)-camphor with Methyl hydrazinecarbodithioate (SMDTC). Its metal complexes were also prepared through the reaction of these ligands with silver and bismuth salts. All complexes were characterized by elemental analyses and various physico-chemical techniques. These Schiff bases behaved as uninegatively charged bidentate ligands and coordinated to the metal ions via ?-nitrogen and thiolate sulphur atoms. The NS Schiff bases formed complexes of general formula, [M(NS)2] or [M(NS)2.H2O] where M is BiIII or AgI, the expected geometry is octahedral for Bi(III) complexes while Ag(I) is expected to oxidized t
... Show MoreNew Schiff base ligand 2-((4-amino-5-(3, 4, 5-trimethoxybenzyl) pyrimidin- 2-ylimino) (phenyl)methyl)benzoic acid] = [HL] was synthesized using microwave irradiation trimethoprim and 2-benzoyl benzoic acid. Mixed ligand complexes of Mn((ІІ), Co(ІІ), Ni(ІІ), Cu(ІІ), Zn(ІІ) and Cd(ІІ) are reacted in ethanol with Schiff base ligand [HL] and 8-hydroxyquinoline [HQ] then reacted with metal salts in ethanol as a solvent in (1:1:1) ratio. The ligand [HL] is characterized by FTIR, UV-Vis, melting point, elemental microanalysis (C.H.N), 1H-NMR, 13C-NMR, and mass spectra. The mixed ligand complexes are characterized by infrared spectra, electronic spectra, (C.H.N), melting point, atomic absorption, molar conductance and magnetic moment me
... Show MoreThe research includes the synthesis and identification of the mixed ligands complexes of M(II) Ions in general composition [M(Lyn)2(phen)] Where L- lysine (C6H14N2O2) commonly abbreviated (LynH) as a primary ligand and 1,10-phenanthroline(C12H8N2) commonly abbreviated as "phen," as a secondary ligand . The ligands and the metal chlorides were brought in to reaction at room temperature in ethanol as solvent. The reaction required the following molar ratio [(1:1:2) (metal): phen:2 Lyn -] with M(II) ions, were M = Mn(II),Cu(II), Ni(II), Co(II), Fe(II) and Cd(II). Our research also includes studying the bio–activity of the some complexes prepared against pathogenic bacteria Escherichia coli(-),Staphylococcus(-) , Pseudomonas (-), Bacillus (-)
... Show MoreSupport vector machines (SVMs) are supervised learning models that analyze data for classification or regression. For classification, SVM is widely used by selecting an optimal hyperplane that separates two classes. SVM has very good accuracy and extremally robust comparing with some other classification methods such as logistics linear regression, random forest, k-nearest neighbor and naïve model. However, working with large datasets can cause many problems such as time-consuming and inefficient results. In this paper, the SVM has been modified by using a stochastic Gradient descent process. The modified method, stochastic gradient descent SVM (SGD-SVM), checked by using two simulation datasets. Since the classification of different ca
... Show MoreThe objective of this research paper is two-fold. The first is a precise reading of the theoretical underpinnings of each of the strategic approaches: "Market approach" for (M. Porter), and the alternative resource-based approach (R B V), advocates for the idea that the two approaches are complementary. Secondly, we will discuss the possibility of combining the two competitive strategies: cost leadership and differentiation. Finally, we propose a consensual approach that we call "dual domination".
The support vector machine, also known as SVM, is a type of supervised learning model that can be used for classification or regression depending on the datasets. SVM is used to classify data points by determining the best hyperplane between two or more groups. Working with enormous datasets, on the other hand, might result in a variety of issues, including inefficient accuracy and time-consuming. SVM was updated in this research by applying some non-linear kernel transformations, which are: linear, polynomial, radial basis, and multi-layer kernels. The non-linear SVM classification model was illustrated and summarized in an algorithm using kernel tricks. The proposed method was examined using three simulation datasets with different sample
... Show MoreBackground: Morphology of the root canal system is divergent and unpredictable, and rather linked to clinical complications, which directly affect the treatment outcome. This objective necessitates continuous informative update of the effective clinical and laboratory methods for identifying this anatomy, and classification systems suitable for communication and interpretation in different situations. Data: Only electronic published papers were searched within this review. Sources: “PubMed” website was the only source used to search for data by using the following keywords "root", "canal", "morphology", "classification". Study selection: 153 most relevant papers to the topic were selected, especially the original articles and review pa
... Show More