The novel groups of organic chromophores containing triphenylamine (TPA) (ATP-I to ATP-IV) have been constructed by structural modification of electron donors with substitution biphenyl and bipyridine rings inserting a π-linkage. Density functional theory (DFT) and time-dependent type of it (TD-DFT) have been operated to study results of donating ability of TPA and spacer on absorption, geometrical, photovoltaic, and energetic attributes of these sensitizers. Structural attributes have been revealed that incorporation of TPA, acceptor and π bridge include a perfect coplanar conformation in TPA-III. Based on frequency computations and ground-state optimization, bandgap (Eg) energy, ELUMO, EHOMO have been determined. For enlightening maximum absorbance wavelength (λmax) and oscillator strength (f), TD-CAM-B3LYP computations have been employed. The absorption wavelength was shifted about ∼650 nm for TPA-III. Results indicate that among all dyes, TPA-III dye is considered the most promising candidates.
Blends of Polymethyl methacrylate (PMMA)/polyvinyl alcohol (PVA) doped with 2% weight percentage of Sn were prepared with different blend ratios using casting technique. The measurements of A.C conductivity σa.c within the frequency range (25kHz – 5MHz) of undoped and Sn doped PMMA/PVA blends obeyed the relationship σ= Aws were the value of s within the range 0 > s > 1. The results showed that σa.c increases with the increase of frequency. The exponent s showed preceding increase with the increase of PVA content for PMMA/PVA blends doped with Sn. The dielectric constant, dielectric loss, A.C electrical conductivity are varied with the concentration of PVA in the blend and frequency of applied electrical field.
An experimental investigation has been carried out for zinc-nickel (Zn-Ni) electro-deposition using the constant applied current technique. Weight difference approach method was used to determine the cathode current efficiency and deposit thickness. Also, the influence effect of current density on the deposition process, solderability, and porosity of the plating layer in microelectronic applications were examined. The bath temperature effect on nickel composition and the form of the contract was studied using Scanning Electron Microscope (SEM). Moreover, elemental nature of the deposition was analyzed by Energy Dispersive X-Ray (EDX).
It has been found that the best bath temperature
... Show MoreNeuroendocrine differentiation has been mentioned in many cancers of non-neuroendocrinal organs, involving the gastrointestinal tract. In contrast, the correlation of focally diffused neuroendocrine differentiation in colorectal adenocarcinoma with neuroendocrine cell hyperplasia has not been somewhat reported. The objective of this research is to study the relationship between neuroendocrine cell hyperplasia and neuroendocrine differentiation in colorectal adenocarcinoma and to find the correlation of neuroendocrine differentiation and VEGF expression with clinicopathological parameters of colorectal adenocarcinoma. Methods employed in the current study were including eighty-one patients with colorectal cancer. Formalin fixed paraffin e
... Show MoreThe electrode in the microbial fuel cell has a significant effect on cell performance. The treatment of the electrode is a crucial step to make the electrode surface more habitable for bacteria growth, thus, increases the power production as well as waste treatment. In the current study, two graphite electrodes were treated by a microwave. The first electrode was treated with 100W microwave energy, while the second one was treated with 600W microwave energy. There is a significant enhancement in the surface of the graphite anode after the pretreatment process. The results show an increase in the power density from 10 mW/m2 to 15 mW/m2 with 100w treatment and to 13.47 mW/m2 with 600w treatment. An organic
... Show MoreMicrobial fuel cell is a device that uses the microorganism metabolism for the production of electricity under specific operating conditions. Double chamber microbial fuel cell was tested for the use of two cheap electrode materials copper and aluminum for the production of electricity under different operating conditions. The investigated conditions were concentration of microorganism (yeast) (0.5- 2 g/l), solutions temperature (33-45 oC) and concentration of glucose as a substrate (1.5- 6 g/l). The results demonstrated that copper electrode exhibit good performance while the performance of aluminum is poor. The electricity is generated with and without the addition of substrate. Addition of glucose substrate
... Show MoreThe cytotoxic effect of catechol was examined in two human cancer cell lines, Epidermoid larynx carcinoma (Hep- 2), Cerebral glioblastoma multiforme (AMGM-5) and Murine mammary adenocarcinomacell (AMN3) treated with half concentrations of catechol (1000, 500, 250, 125, 62.5 and 32.25 μM) for 72 hr. The get hold of results showed catechol have a toxic effect of the cell viability of three types of cell lines after 72h of exposure, the toxicity was dependent on catechol concentrations and/or autoxidation for quinines formation, there were a marked decreased of cell viability in a dose dependent manner in all cell line types. Inhibition concentration of catechol for 50% of cell viability (IC50) were calculated, they were at 581.5 μM, 478 μM
... Show MoreThe aim of research is to show the effect of Ferric Oxide (Fe2O3) on the electricity production and wastewater treatment, since 2.5% of Ferric Oxide (Fe2O3) (heated and non heated) nanoparticles has been used. Characterization of nanoparticles was done using X-ray Diffraction (XRD) and Scan Electron Microscopy (SEM). The influence of acidity was also studied on both wastewater treatmenton the Chemical Oxygen demand (COD) and Biological Oxygen Demand (BOD) and voltage output was studied. From the results, it was infused that the dosage of 0.025 g/l and an initial pH 7 were founded to be optimum for the effective degradation of effluents. The results concluded that the treatment of anaerobic sludge wastewater using Ferric Oxide (Fe2O3) in
... Show MoreThis study looked at how the synthetic chitosan-AgNPs-Doxorubicin-folic acid combination affected the A549 cell line in terms of cytotoxicity and anticancer activity. By reducing silver nitrate (AgNO3) and biodegradable chitosan, silver nanoparticles were biosynthesized. The produced conjugate was examined by using FT-IR spectroscopy, atomic force microscopy (AFM), and field emission scanning electron microscopy (FE-SEM). The cytotoxicity assay for the viability of A549 cells revealed that the combination of chitosan, AgNPs, doxorubicin, and folic acid decrease cell viability in a dose-determined by method over 48 hours, which direct to a dependent reduce in the activity of A549 cells. The mechanism analysis of the impacted living cells lea
... Show MoreBackground: In spite of all efforts, Non-small cell lung cancer (NSCLC) is a fatal solid tumor with a poor prognosis as of its high metastasis and resistance to present treatments. Tyrosine kinase inhibitors (TKI) such as erlotinib are efficient in treating NSCLC but the emergence of chemoresistance and adverse effects substantially limits their single use. Objective: in this study, the combination treatments of either 2-deoxy-D-glucose (2DG) or cinnamic acid (CINN) with erlotinib (ERL) were tested for their possible synergistic effect on the proliferation and migration capacity of NSCLC cells. Methods: In this study, NSCLC model cell line A549 was used to investigate the effects of single compounds and their combination on cell gro
... Show More