The flavonoglycone hesperidin is recognized as a potent anti-inflammatory, anticancer, and antioxidant agent. However, its poor bioavailability is a crucial bottleneck regarding its therapeutic activity. Gold nanoparticles are widely used in drug delivery because of its unique properties that differ from bulk metal. Hesperidin loaded gold nanoparticles were successfully prepared to enhance its stability and bioactive potential, as well as to minimize the problems associated with its absorption. The free radical scavenging activities of hesperidin, gold nanoparticles, and hesperidin loaded gold nanoparticles were compared with that of Vitamin C and subsequently evaluated in vitro using 2,2-diphenyl-1-picrylhydrazyl assay. The antioxidant pharmacophore-based structure-activity relationship analysis was assessed by the density functional theory as well as quantum chemical calculations. Moreover, the structural properties were utilized using Becke’s three-parameter hybrid exchange and Lee-Yang-Parr’s correction of functional approaches. Hesperidin-loaded gold nanoparticles were found to decrease hydrogen peroxide (H2O2) and thus induce Deoxyribonucleic acid (DNA) instability. In addition, hesperidin-gold nanoparticles were observed to display important antioxidant potential as well as ameliorate the functional activity of macrophages against
DNA methylation is one of the main epigenetic mechanisms in cancer development and progression. Aberrant DNA methylation of CpG islands within promoter regions contributes to the dysregulation of various tumor suppressors and oncogenes; this leads to the appearance of malignant features, including rapid proliferation, metastasis, stemness, and drug resistance. The discovery of two important protein families, DNA methyltransferases (DNMTs) and Ten-eleven translocation (TET) dioxygenases, respectively, which are responsible for deregulated transcription of genes that play pivotal roles in tumorigenesis, led to further understanding of DNA methylation-related pathways. But how these enzymes can target specific genes in different malignancies;
... Show MoreGeneral Background: Breast cancer is the most prevalent cancer affecting women, with increasing incidence worldwide. Specific Background: Recent research has focused on the role of epigenetic changes in DNA damage, repair mechanisms, and the potential therapeutic effects of probiotics. Probiotics have shown promise in promoting tissue regeneration and DNA repair. Knowledge Gap: However, the precise impact of probiotics on DNA repair in cancer cells, specifically breast cancer cells, remains underexplored. Aims: This study aimed to evaluate the effects of probiotics on DNA damage repair in AMJ13 Iraqi breast cancer cells and assess the cytotoxic effects of probiotics on these cells. Results: Using the comet assay, we found significan
... Show MoreThe fingerprinting DNA method which depends on the unique pattern in this study was employed to detect the hydatid cyst of Echinococcus granulosus and to determine the genetic variation among their strains in different intermediate hosts (cows and sheep). The unique pattern represents the number of amplified bands and their molecular weights with specialized sequences to one sample which different from the other samples. Five hydatitd cysts samples from cows and sheep were collected, genetic analysis for isolated DNA was done using PCR technique and Random Amplified Polymorphic DNA reaction(RAPD) depending on (4) random primers, and the results showed:
... Show MoreObjective: To assess role of obesity in Covid-19 patients on antibodies production, diabetes development, and treatment of this disease. Methodology: This observational study included 200 Covid-19 patients in privet centers from January 1, 2021 to January 1, 2022. All patients had fasting blood sugars and anti-Covid-19 antibodies. Anthropometric parameters were measured in all participants. Results: The patients were divided into two groups according to body weight; normal body weight (50) and excess body weight (150). There was a significant difference between them regarding age. Diabetes mellitus developed in 20% of normal weight patients while 80% of excess weight patients had diabetes (p=0.0001). Antibodies production (IgM and
... Show MoreObjective: To assess role of obesity in Covid-19 patients on antibodies production, diabetes development, and treatment of this disease. Methodology: This observational study included 200 Covid-19 patients in privet centers from January 1, 2021 to January 1, 2022. All patients had fasting blood sugars and anti-Covid-19 antibodies. Anthropometric parameters were measured in all participants. Results: The patients were divided into two groups according to body weight; normal body weight (50) and excess body weight (150). There was a significant difference between them regarding age. Diabetes mellitus developed in 20% of normal weight patients while 80% of excess weight patients had diabetes (p=0.0001). Antibodies production (IgM and
... Show MoreIn this paper an attempt to provide a single degree of freedom lumped model for fluid structure interaction (FSI) dynamical analysis will be presented. The model can be used to clarify some important concept in the FSI dynamics such as the added mass, added stiffness, added damping, wave coupling ,influence mass coefficient and critical fluid depth . The numerical results of the model show that the natural frequency decrease with the increasing of many parameters related to the structure and the fluid .It is found that the interaction phenomena can become weak or strong depending on the depth of the containing fluid .The damped and un damped free response are plotted in time domain and phase plane for different model parameters It is fou
... Show MoreCobalt substituted nickel copper ferrite samples with general formula Ni0.95-xCoxCu0.05Fe2O4, where (x= 0.00, 0.01, 0.02, 0.03, 0.04 and 0.05) were prepared by solid-state reactions method at 1373 K for 4h. The samples prepared were examined by X-ray diffraction (XRD(, atomic force microscope (AFM), Fourier transform infra-red spectroscopy (FTIR) and Vickers hardness. X-ray diffraction patterns confirm the formation of a single phase of cubic spinel structure in all the prepared samples . XRD analysis showed that the increase in the cobalt concentration causes an increase in the lattice constant, bulk density (ρm) and the x-ray density (ρx), whereas porosity (p) and crystallite size (D) decrease. The Topography of the surface observed
... Show MoreChitosan (CH) / Poly (1-vinylpyrrolidone-co-vinyl acetate) (PVP-co-VAc) blend (1:1) and nanocomposites reinforced with CaCO3 nanoparticles were prepared by solution casting method. FTIR analysis, tensile strength, Elongation, Young modulus, Thermal conductivity, water absorption and Antibacterial properties were studied for blend and nanocomposites. The tensile results show that the tensile strength and Young’s modulus of the nanocomposites were enhanced compared with polymer blend [CH/(PVP-co-VAc)] film. The mechanical properties of the polymer blend were improved by the addition of CaCO3 with significant increases in Young’s modulus (from 1787 MPa to ~7238 MPa) and tensile strength (from 47.87 MPa to 79.75 MPa). Strong interfacial
... Show MoreThe aim of study is to identify the histological changes in ovaries of the albino mice exposed to silver nanoparticles. Sixty adult females were collected and exposures by 4000 p.p.m. and 50-150 nm in size, Females were divided into 3treated groups. The concentration dosage was (1, 1.5 and 2) p.p.m. of silver nanoparticles for 7, 14 and 21 days as exposure periods as well as control group which treated by normal saline. Treated groups appeared different histopathological changes, it is depending on the concentration of silver nanoparticles and the period of exposure. These changes were included congestion in the blood vessels, hemorrhage, hyaline degeneration, fatty degeneration, pyknosis, necrosis as well as fusion of cells in follicula
... Show More