In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative characterization of surface structure and morphology of the accumulated oxides. The energy dispersive X-ray (EDX) provided a semi-quantitative analysis of deposit composition. The atomic force microscopy (AFM) apparatus quantified the roughness. We examined the efficiency of composite electrodes in coinciding with the removal of Chemical Oxygen Demand (COD) under current densities of 40, 60, and 80 mA/cm2, pH values of 3, 4, and 5, and NaCl concentrations of 1, 1.5, 2 g/l. RSM covered the optimization of process parameters in conjunction with Central Composite Design (CCD). The COD represented the response function in the optimization procedure. The optimal current density, NaCl concentration, and pH magnitude were 80 mA/cm2, 1.717 g/l, and 3, respectively. The efficiency of COD elimination of 99.925% attained after 1 hour of indirect electrochemical oxidation with an energy consumption of 152.380 kWh per kilogram of COD. The COD elimination model is significant based on the correlation coefficient (R2) and F-values, and the experimental data fitted well to a second-order polynomial model with R2 of 98.93%.
Background: The irradiation of teeth with a laser results in an interaction between the light and the biological constituents of the dental hard substance, which is converted directly into heat.This thermal effect is the cause of the structural and chemical enamel changes.The combined treatment of topical fluoride agent with laser may increase fluoride uptake, and reduce progression of caries-like lesions. The aim of this study was to measure the uptake of the acidulated phosphate fluoride and sodium fluoride to the buccal and lingual caries-like lesion enamel surfaces before and after irradiated by Nd-YAG laser in comparison with matching control group. Materials and methods: The sample consisted of 30 human healthy upper premolar teeth wh
... Show MoreElectrocoagulation is an electrochemical method for treatment of different types of wastewater whereby sacrificial anodes corrode to release active coagulant (usually aluminium or iron cations) into solution, while simultaneous evolution of hydrogen at the cathode allows for pollutant removal by flotation or settling. The Taguchi method was applied as an experimental design and to determine the best conditions for chromium (VI) removal from wastewater. Various parameters in a batch stirred tank by iron metal electrodes: pH, initial chromium concentration, current density, distance between electrodes and KCl concentration were investigated, and the results have been analyzed using signal-to-noise (S/N) ratio. It was found that the r
... Show MoreNanocrystalline micro-mesoporous ZSM/MCM-41 composite was synthesized using alkaline treatment method and two step of crystallization in poly tetraflouroethylene (PTFE) lined autoclave. The synthesized zeolites was characterized by X-Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), Atomic force microscopy (AFM), Fourier transport infrared (FTIR), and N2 adsorption-desorption (BET). It was approved that the best results for alkaline leaching can be got with 1.5M NaOH solution. High surface (BET) area of 630 m2/g with pore volume of 0.55 cm3/g has been got. AFM reports showed a nano-level size for average particle size of 50nm.
We have investigated the impact of laser pulse wavelength on the quantity of ablated materials. Specifically, this study investigated the structural, optical, and morphological characteristics of tungsten trioxide (WO3) nanoparticles (NPs) that were synthesized using the technique of pulsed-laser ablation of a tungsten plate. A DD drop of water was used as the ablation environment at a fixed fluence at 76.43 J/cm2 and pulse number was 400 pulses of the laser. The first and second harmonic generation ablations were carried out, corresponding to wavelengths of 1064 and 532 nm, respectively. The Q-switched Nd: YAG laser operates at a repetition rate of 1 Hz and has a pulse width of roughly 15 ns. These parameters are applicable to both wavelen
... Show More