In the present work, Response Surface Methodology (RSM) was utilized to optimize process variables and find the best circumstances for indirect electrochemical oxidation of mimicked wastewater to remove phenol contaminants using prepared ternary composite electrode. The electrodeposition process is used for the synthesis of a ternary composite electrode of Mn, Co, and Ni oxides. The selected concentrations of metal salts of these elements were 0.05, 0.1, and 1.5 M, with constant molar ratio, current density, and electrolysis time of 1:1:1, 25 mA/cm2, and 2 h. Interestedly, the gathered Mn-Co-Ni oxides were deposited at both the anode and cathode. X-ray diffraction (XRD) and scanning electron microscopy (SEM) facilitated the qualitative characterization of surface structure and morphology of the accumulated oxides. The energy dispersive X-ray (EDX) provided a semi-quantitative analysis of deposit composition. The atomic force microscopy (AFM) apparatus quantified the roughness. We examined the efficiency of composite electrodes in coinciding with the removal of Chemical Oxygen Demand (COD) under current densities of 40, 60, and 80 mA/cm2, pH values of 3, 4, and 5, and NaCl concentrations of 1, 1.5, 2 g/l. RSM covered the optimization of process parameters in conjunction with Central Composite Design (CCD). The COD represented the response function in the optimization procedure. The optimal current density, NaCl concentration, and pH magnitude were 80 mA/cm2, 1.717 g/l, and 3, respectively. The efficiency of COD elimination of 99.925% attained after 1 hour of indirect electrochemical oxidation with an energy consumption of 152.380 kWh per kilogram of COD. The COD elimination model is significant based on the correlation coefficient (R2) and F-values, and the experimental data fitted well to a second-order polynomial model with R2 of 98.93%.
Innovative various Schiff bases and their Co(II), Ni(II) and Cu(II) and Hg(II) compounds made by the condensation of 4-amino antipyrine with derived aminobenzoic acid (2-aminobenzoic acid, 3-aminobenzoic acid, and 4-aminobenzoic acid ) have been prepared by conventional approaches. These complexes were described by magnetic sensibility analysis, FT-IR spectra, and molar-conductance and elemental analysis. Analytical values appeared which the mixed-ligand complexes presented ratio about 2:1 (ligand: metal) with the chelation 4 or 6. The prepared compounds offered a good effect on the organisms; bacteria Staphylococcus-aurous, Escherichia-coli and fungi C. albicans, A. niger. Also, the biological products signalize which the mixed compl
... Show MoreIn the present study, a powder mixture of elements Ti and Ni was mechanically alloyed in a high energy ball mill. Microstructure of the nanosized amorphous milled product in different stages of milling has been characterized by X- ray diffraction, scanning electron microscopy and differential thermal analysis. We found that time of mechanical alloying is more significant to convert all crystalline structure to the amorphous phase. Nanocrystalline phase was achieved as a result of the mechanical alloying process. The results also indicates that the phase transformation and the grain size occurs in these alloys are controlled by ball milling time
The N-[(2,3-dioxoindolin-1-yl)-N-methylbenzamide] was prepared by the reaction of acetanilide with isatin then in presence of added paraformaldehyde, the prepared ligand was identified by microelemental analysis, FT.IR and UV-Vis spectroscopic techniques. Treatment of the prepared ligand with the following selected metal ions (CoII, NiII, CuII and ZnII) in aqueous ethanol with a 1:2 M:L ratio, yielded a series of complexes of the general formula [M(L)2Cl2]. The prepared complexes were characterized using flame atomic absorption, (C.H.N) analysis, FT.IR and UV-Vis spectroscopic methods as well as magnetic susceptibility and conductivity measurements. Chloride ion content was also evaluated by (Mohr method). From the obtained data the octahed
... Show MoreTo evaluate the Interaction of Mn(II), Fe(II), Co(II), Ni(II),Cu(II), Zn(II) And Cd(II) Mixed- Ligand Complexes of cephalexin mono hydrate (antibiotics) And Furan-2-Carboxylic Acid To The Different DNA Sources. All the metal complexes were observed to cleave the DNA. A difference in the bands of complexes .The cleavage efficiency of the complexes compared with that of the control is due to their efficient DNA-binding ability and the other factors like solubility and bond length between the metal and ligand may also increase the DNA-binding ability. The ligands (Cephalexin mono hydrate (antibiotics) and Furan-2- Carboxylic acid and there newly synthesized metal complexes shows good antimicrobial activities and Binding DNA , thus, can be used
... Show MoreThe thermal distribution in the diseased tissue treated by different methods faces the problem of an uncontrollable defused heat. In the present article, we use a plasmonic bowtie nanoantenna working in the near infrared region to enhance the temperature confinement in the tissue. The Computer Simulation Technology Studio Suite package version 2019 was used to execute the design of both plasmonic nanoantenna and the tissue. Gold nanostructure and silicon carbide dioxide are the components the plasmonic nanoantenna in the bowtie shape. The results showed that the distance between the tumor tissue and the antenna is important to determine the intensity field where the maximum field is 5.9*107 V/m at a distance of 100 nm. The maximum
... Show MoreIN this work, a titanium dental implant was modified by electro-polymerized of 4-allyl-2-methoxyphenol (Eugenol) using direct current lower than 3.5 volt. The modification of titanium dental implant was achieved to improve its corrosion resistant. Fourier transform infrared spectroscopy (FTIR) was employed to confirm the electro-polymerization of Eugenol to Poly Eugenol (PE) on pure titanium. Deposition of PE on titanium was confirmed by X-ray diffraction and was characterized by thermogravimetric analysis (TGA). The surface morphology of polymeric film were examined through scanning electron microscopy (SEM). Coated titanium by (PE) revealed a good corrosion protection efficiency even at temperature ranged (293-323)K in artificial saliva.
... Show MoreThis work studied the electrical and thermal surface conductivity enhancement of polymethylmethacrylate (PMMA) clouded by double-walled carbon nanotubes (DWCNTs) and multi-walled carbon nanotube (MWCNTs) by using pulsed Nd:YAG laser. Variable input factors are considered as the laser energy (or the relevant power), pulse duration and pulse repetition rate. Results indicated that the DWCNTs increased the PMMA’s surface electrical conductivity from 10-15 S/m to 0.813×103 S/m while the MWCNTs raised it to 0.14×103 S/m. Hence, the DWCNTs achieved an increase of almost 6 times than that for the MWCNTs. Moreover, the former increased the thermal conductivity of the surface by 8 times and the later by 5 times.