Several million tons of solid waste are produced each year as a result of construction and demolition activities around the world, and brick waste is one of the most widely wastes. Recently, there has been growing number in studies that conducted on using of recycling brick waste (RBW) to produce environmentally friendly concrete. The use of brick waste (BW) as potential partial cement or aggregate replacement materials is summarized in this review where the performance is discussed in the form of the mechanical strength and properties that related to durability of concrete. It was found that, because the pozzolanic activity of clay brick powder, it can be utilized as substitute for cement in replacement level up to 10%. Whereas, for natural coarse aggregate, recycled aggregate can be used instead of it, but in limited replacement level. Concrete manufacturing from recycled aggregate can give adequate strength and can be suitable for the producing medium or low strength concrete. On the other side, the utilization of fine recycled brick waste as aggregate in the concrete manufacturing provide development of the properties of concrete and it develops the durability of concrete in some cases when used with replacement level up to 10% by the weight of fine aggregate.
Highly plastic soils exhibit unfavorited properties upon saturation, which produce different defects in engineering structures. Attempts were made by researchers to proffer solutions to these defects by experimenting in practical ways. This included various materials that could possibly improve the soil engineering properties and reduce environmental hazards. This paper investigates the strength behavior of highly plastic clay stabilized with brick dust. The brick dust contents were 10%, 20%, and 30% by dry weight of soil. A series of linear shrinkage and unconfined compression tests were carried out to study the effect of brick dust on the quantitative amount of shrinkage experienced by highly plastic clay and the undra
... Show MoreIn the present work effect of recycled heating and cooling on the values of concrete compressive strength due to high temperature of 4000C was studied.
The tests show that the percent of reduction in compressive strength of the samples which exposed to a temperature of 4000C for one cycle was 32.5%, while the reduction was 52.7% for the samples which were exposed to recycled heating and cooling of ten times .
Moreover a study of the effect of specimen sizes on the percentages of compressive strength reduction due to high temperature
... Show MoreEnvironmentally friendly copper oxide nanoparticles (CuO NPs) were prepared with a green synthesis route via Anchusa strigosa L. Flowers extract. These nanoparticles were further characterized by FTIR, XRD and SEM techniques. Removing of Gongo red from water was applied successfully by using synthesized CuO NPs which used as an adsorbent material. It was validated that the CuO NPs eliminate Congo red by means of adsorption, and the best efficiency of adsorption was gained at pH (3). The maximum adsorption capacity of CuO NPs for Congo red was observed at (35) mg/g. The equilibrium information for adsorption have been outfitted to the Langmuir, Freundlich, Temkin and Halsey adsorption isot
... Show MoreColloidal silver nanoparticles were prepared by single step green synthesis using aqueous extracts of the leaves of thyme as a function of different molar concentration of AgNO3 (1,2,3,4 mM(. The Field Emission Scanning Electron Microscopy (FESEM), UV-Visible and X-ray diffraction (XRD) were used to characterize the resultant AgNPs. The surface Plasmon resonance was observed at wavelength of 444 nm. The four intensive peaks of XRD pattern indicate the crystalline nature and the face centered cubic structure of the AgNPs. The average crystallite size of the AgNPs ranged from 18 to 22 nm. The FESEM image illustrated the well dispersion of the AgNPs and the spherical shape of the nanoparticles with a particle size distribution be
... Show MoreLaser is a powerful device that has a wide range of applications in fields ranging from materials science and manufacturing to medicine and fibre optic communications. One remarkable
Portland cement concrete is the most commonly used construction material in the world for decades. However, the searches in concrete technology are remaining growing to meet particular properties related to its strength, durability, and sustainability issue. Thus, several types of concrete have been developed to enhance concrete performance. Most of the modern concrete types have to contain supplementary cementitious materials (SCMs) as a partial replacement of cement. These materials are either by-products of waste such as fly ash, slag, rice husk ash, and silica fume or from a geological resource like natural pozzolans and metakaolin (MK). Ideally, the utilization of SCMs will enhance the concrete performance, minimize
... Show MoreThe emergence of such widespread pharmaceuticals as a pollutant has become one of the world's critical environmental problems that may lead to both the public's health and biodiversity deterioration. This article provides an exhaustive account of the current understanding of the environmental persistence of pharmaceutical contaminants following in-depth analysis of the additive effects of existing natural biodegradation pathways on the human health impact of these drugs. Paying special attention to biodegradation decomposing agents such as bacteria, fungi, and algae the paper estimates their ability to convert drug ingredients to compound that is eventually less toxic. Although these biologic systems contain an enormous potential fo
... Show MoreThe main objective of this study is to understand the work of the pile caps made of lightweight aerated foam concrete and study the many factors affecting the ability and the capacity of the shear. The study was done by analyzing previous practical and theoretical experiences on the reinforced concrete pile caps. The previous practical results indicated that all specimens failed by shear diagonal compression or tension modes except one specimen that failed flexural-shear mode. Based on test specimens' practical results and behavior, some theoretical methods for estimating the ultimate strength of reinforced concrete pile caps have been recommended, some of which evolved into the design documents available on the subject.
... Show More