The manganese doped zinc sulfide nanoparticles were synthesized by simple aqueous chemical reaction of manganese chloride, zinc acetate and thioacitamide in aqueous solution. Thioglycolic acid is used as capping agent for controlling the nanoparticle size. The main advantage of the ZnS:Mn nanoparticles of diameter ~ 2.73 nm is that the sample is prepared by using non-toxic precursors in a cost effective and eco-friendly way. The structural, morphological and chemical composition of the nanoparticles have been investigated by X-ray diffraction (XRD), Scanning Electron Microscopy (SEM) with energy dispersion spectroscopy (EDS) and Fourier transform infrared (FTIR) spectroscopy. The nanosize of the prepared nanoparticles was elucidated by Scanning Electron Microscopy (SEM). FTIR result ensures that Thioglycolic acid is well bonded on the surface of ZnS:Mn NPs. The antifungal effects of Thioglycolic acid capped ZnS:Mn nanoparticles exhibited a potent antifungal activity against tested fungal strains, so deserving further investigation for clinical applications. The antifungal property of manganese doped zinc sulphide nanoparticles is attributed to the generation of reactive oxygen species due to the interaction of nanoparticles with water. Additionally, the presence of Zn and S in the zone of inhibition area leads to perturbation of fungi cell membranes resulting in growth inhibition.
The Evaluation of the immune response in Golden Hamsters experimentally infected with Leishmania donovani was determined in this study, particularly, the cellular immune response. Follow up has maintained to determine the Delayed Type of Hypersensitivity using skin test both in infected and control lab animals. Chicken red blood cells were used as a parameter to evaluate the immune system; they are dull and have the ability of immunization. Two concentrations of chicken R.B.C were examined to determine which gives the higher titration in Hamsters and those were 1.5 X 109 cell/ml and 3 X 109 cell/ml , the second concentration gave the maximum titration where then used in this work. After sensitization with Chicken R.B.C for both infected a
... Show MoreThe Evaluation of the immune response in Golden Hamsters experimentally infected with Leishmania donovani was determined in this study, particularly, the cellular immune response. Follow up has maintained to determine the Delayed Type of Hypersensitivity using skin test both in infected and control lab animals. Chicken red blood cells were used as a parameter to evaluate the immune system; they are dull and have the ability of immunization. Two concentrations of chicken R.B.C were examined to determine which gives the higher titration in Hamsters and those were 1.5 X 109 cell/ml and 3 X 109 cell/ml , the second concentration gave the maximum titration where then used in this work. After sensitization with Chicken R.B.C for both in
... Show MoreThe increase in obesity and the many accompanying diseases is attributed to the increased production and consumption of foods made of non-nutritive sweeteners without regard to the risks of consuming additional calories, and this in turn leads to hormonal imbalance and metabolic disorders and the resulting imbalance and ill health that have spread to all segments of society. During the research, 0.01, 0.02, 0.03, 0.04 and 0.05 % of stevia sweetener was added to the cream instead of the sugar used. Physical and chemical tests were performed for the stevia extract and the microbial content in the cream, as well as the sensory evaluation. It was noted that fortifying the cream with calorie-free stevia sugar led to the production of
... Show MoreBackground: The mechanical properties of 3D-printed denture base resins are crucial factors for determining the quality and performance of dentures inside a patient’s mouth. Tensile strength and diametral compressive strength are two properties that could play significant roles in assessing the suitability of a material. Although they measure different aspects of material behavior, a conceptual link exists between them in terms of overall material strength and resilience. Aim: This study aims to investigate the correlation between tensile strength and diametral compressive strength after incorporating 2% ZrO2 nanoparticles (NPs) by weight into 3D-printed denture base resin. Methods: A total of 40 specimens (20 dumbbell-shaped and
... Show MoreQ-switch Nd: YAG laser of wavelengths 235nm and 1,460nm with energy in the range 0.2 J to 1J and 1Hz repetition rate was employed to synthesis Ag/Au (core/shell) nanoparticles (NPs) using pulse laser ablation in water. In this synthesis, initially the silver nano-colloid prepared via ablation target, this ablation related to Au target at various energies to creat Ag/Au NPs. Surface Plasmon Resonance (SPR), surface morphology and average particle size identified employing: UV-visible spectrophotometer, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The absorbance spectra of Ag NPs and Ag/Au NPs showed sharp and single peaks around 400nm and 410nm, respec
In this work, functionally graded materials were synthesized by centrifugal technique at different
volume fractions 0.5, 1, 1.5, and 2% Vf with a rotation speed of 1200 rpm and a constant rotation time, T
= 6 min . The mechanical properties were characterized to study the graded and non-graded nanocomposites
and the pure epoxy material. The mechanical tests showed that graded and non-graded added alumina
(Al2O3) nanoparticles enhanced the effect more than pure epoxy. The maximum difference in impact strength
occurred at (FGM), which was loaded from the rich side of the nano-alumina where the maximum value was
at 1% Vf by 133.33% of the sample epoxy side. The flexural strength and Young modulus of the fu
Aqueous root extract has been used to examine the green production of silver nanoparticles (AgNPs) by reducing the Ag+ ions in a silver nitrate solution. UV-Vis spectroscopy, X-ray diffraction, field emission scanning electron microscopy, and Fourier transform infrared spectroscopy (FTIR) were used to analyze the produced AgNPs. The AgNPs that were created had a maximum absorbance at 416 nm, were spherical in form, polydispersed in nature, and were 685 nm in size.The AgNPs demonstrated antibacterial efficacy against Escherichia coli and Staphylococcus. The dengue vector Aedes aegypti's second instar larvae were very susceptible to the AgNPs' powerful larvicidal action.